网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
25MnB热成形钢的动态再结晶行为及组织演变
英文标题:Dynamic recrystallization behavior and microstructure evolution of 25MnB hot forming steel
作者:付艺枫1 陈兴召1 兰亮云1 常智渊2 程旭3 崔丽4 
单位:(1.东北大学 机械工程与自动化学院 辽宁 沈阳 110819 2. 攀钢集团研究院有限公司 四川 攀枝花 617000   3. 空装驻沈阳地区第一军事代表室 辽宁 沈阳 110039 4. 沈阳飞机工业集团有限公司 辽宁 沈阳 110039) 
关键词:25MnB钢 热压缩 动态再结晶 动力学模型 应变不均匀性 组织演变 
分类号:TG307
出版年,卷(期):页码:2024,49(12):198-207
摘要:

 摘要:基于热压缩实验研究了25MnB钢在变形温度为850~1150 ℃、应变速率为0.01~30 s-1范围内的动态再结晶行为(DRX)。利用加工硬化率理论求解其DRX临界应变,并建立了临界应变模型,基于Avrami模型描述了DRX动力学和晶粒尺寸演变规律,并将模型嵌入到DEFORM-3D有限元软件中,实现了对25MnB钢DRX行为的可视化模拟。结果表明,25MnB钢试样的等效应变和等效应变速率演变均显示出不均匀性,DRX程度与等效应变分布具有依赖性。变形条件对DRX体积分数和晶粒尺寸演变影响显著,随着温度的降低和应变速率的增加,中心区域发生完全DRX,晶粒尺寸得到明显细化;但由于局部不充分DRX现象,同一截面上晶粒尺寸分布的不均匀性也随之增加。DEFORM有限元仿真结果与实验结果具有较好的一致性,为预测25MnB钢在热冲压过程的组织演变提供依据。

 

 Abstract: Based on hot compression experiment, the dynamic recrystallization (DRX) behavior of 25MnB steel at the deformation temperatures of 850-1150 ℃ and the strain rates of 0.01-30 s-1 was studied. Then, the critical strain of its DRX was solved by the theory of work hardening rate, and the critical strain model was established. Furthermore, based on Avrami model, the DRX dynamics and grain size evolution laws were described, and these models were embedded into finite element model software DEFORM-3D to achieve visual simulation of DRX behavior for 25MnB steel. The simulation results indicates that the evolution of equivalent strain and equivalent strain rate for 25MnB steel samples exhibits non-uniformity, and the degree of DRX is dependent on the distribution of equivalent strain. The deformation conditions have a significant impact on the evolution of DRX volume fraction and grain size. With the decreasing of temperature and the increasing of strain rate, the complete DRX occurs in the central region, and the grain size is significantly refined. However, due to the insufficient local DRX phenomenon, the non-uniformity of grain size distribution on the same cross-section is also increased. The finite element simulation results of DEFORM are in good agreement with the experimental results, providing a basis for the microstructural evolution prediction of 25MnB steel during the hot stamping process.

 
基金项目:
作者简介:
作者简介:付艺枫(1998-),男,硕士 E-mail:1085952759@qq.com
参考文献:

 
[1]Merklein M,Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels
[J]. Journal of Materials Processing Technology,2006,177(1-3):452-455.


 


[2]李辉平,贺连芳,杨肖丹,等. 形变和冷却对B1500HS硼钢马氏体相变的影响
[J]. 机械工程学报,2016,52(10):67-74.

 

Li H P,He L F,Yang X D,et al. Effect of deformation and cooling on the phase transformation of martensite for B1500HS boron steel
[J]. Journal of Mechanical Engineering,2016,52(10):67-74.

 


[3]Luo H W,Wang X H,Liu Z B. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel
[J]. Journal of Materials Science & Technology,2020,51:130-136.

 


[4]Chamanfar A,Chentouf S M,Jahazi M. Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel
[J]. Journal of Materials Research and Technology,2020,9(6):12102-12114.

 


[5]Zhou J,Wang B Y,Lin J G. Forming defects in aluminum alloy hot stamping of side-door impact beam
[J]. Transactions of Nonferrous Metals Society of China,2014,24(11):3611-3620.

 


[6]Fujita N,Narushima T,Iguchi Y. Grain refinement of as cast austenite by dynamic recrystallization in HSLA steels
[J]. ISIJ International,2003,43(7):1063-1072.

 


[7]Chang Y,Meng Z H,Ying L. Influence of hot press forming techniques on properties of vehicle high strength steels
[J]. Journal of Iron and Steel Research,International,2011,18(5):59-63.

 


[8]Dong H B,Kang Y L,Yu H. A discussion on evolution of microstructures and influence factors during continuous rolling of compact strip production
[J]. Journal of Materials Science & Technology,2009,20:274-278.

 


[9]Ji H C,Cai Z M,Pei W C. DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: Experiment and finite element simulation
[J]. Journal of Materials Research and Technology,2020,9(3):4340-4355.

 


[10]Duan X W,Liu J J,Gong B. Experimental study and numerical simulation of dynamic recrystallization behavior of a high-strength steel
[J]. Metals and Materials International,2021,27(5):1044-1059.

 


[11]Baron T J,Khlopkov K,Pretorius T. Modeling of microstructure evolution with dynamic recrystallization in finite element simulations of martensitic steel
[J]. Steel Research International,2015,87(1):37-45.

 


[12]Sun X Y, Zhang M, Wang Y. The kinetics and numerical simulation of dynamic recrystallization behavior of medium Mn steel in hot working
[J]. Steel Research International,2020,91(7):1900675.

 


[13]Matsumoto R,Osumi Y,Utsunomiya H. Reduction of friction of steel covered with oxide scale in hot forging
[J]. Journal of Materials Processing Technology, 2014,214(3):651-659.

 


[14]Sakai T. Dynamic recrystallization microstructures under hot working conditions
[J]. Journal of Materials Processing Technology,1995,53(1-2):349-361.

 


[15]Dehghan-Manshadi A,Barnett M R,Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation
[J]. Materials Science and Engineering: A,2008,485(1-2):664-672.

 


[16]Poliak E I,Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization
[J]. Acta Materialia,1996,44(1):127-136.

 


[17]Poliak E I,Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation
[J]. ISIJ International,2003,43(5):684-691.

 


[18]杨晓雅,何岸,谢甘霖,等. 核电用奥氏体不锈钢的动态再结晶行为
[J]. 工程科学学报,2015,37(11):1447-1455.

 

Yang X Y,He A,Xie G L,et al.Dynamic recrystallization behavior of an austenitic stainless steel for nuclear power plants
[J]. Chinese Journal of Engineering,2015,37(11):1447-1455.

 


[19]Xu Y,Birnbaum P,Pilz S. Investigation of constitutive relationship and dynamic recrystallization behavior of 22MnB5 during hot deformation
[J]. Results in Physics,2019,14:102426.

 


[20]Lin Y C,Chen M S,Zhong J. Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel
[J]. Materials & Design,2009,30(3):908-913.

 


[21]Chamanfar A,Valberg H S,Templin B. Development and validation of a finite-element model for isothermal forging of a nickel-base superalloy
[J]. Materialia,2019,6:100319.

 


[22]Slater C,Tamanna N,Davis C. Optimising compression testing for strain uniformity to facilitate microstructural assessment during recrystallisation
[J]. Results in Materials,2021,11:100218.

 


[23]乔世昌,王岩,吕良星. Ni-Co-Cr基粉末高温合金动态再结晶的有限元模拟与实验研究
[J]. 中南大学学报(自然科学版),2021,52(10):3405-3418.

 

Qiao S C,Wang Y,Lyu L X. Finite element simulation and experimental research on dynamic recrystallization of Ni-Co-Cr-based PM superalloy
[J]. Journal of Central South University(Science and Technology),2021,52(10):3405-3418.

 


[24]禹宝军. 二相粒子材料动态再结晶行为的元胞自动机模型及其模拟研究
[D]. 济南:山东大学,2012.

 

Yu B J.Modeling and Simulation of Dynamic Recrystallization Behavior for Materials with Second Phase Particles Using Cellular Automata Method
[D]. Jinan:Shandong University,2012.

 


[25]Quan G,Luo G,Liang J. Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range
[J]. Computational Materials Science,2015,97:136-147.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9