[1]Hwang B, Kim T, Ahn Y. Experimental and numerical investigation of austenitic stainless steel (304 type) slit damper structural behavior [J]. ThinWalled Structures, 2024, 196: 111551.
[2]Xu S, He J S, Zhang R Z, et al. Hot deformation behaviors and dynamic softening mechanisms of 7Mo superaustenitic stainless steel with high stacking fault energy [J]. Journal of Materials Research and Technology, 2023, 23: 1738-1752.
[3]Shaban G M, Eghbali B. Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel [J]. Materials ence & Engineering A, 2018, 730: 380-390.
[4]Hu Y, Wang L H, Ouyang M H, et al. Hot deformation behaviors and dynamic softening mechanism of 6%Si highsilicon austenitic stainless steel [J]. Journal of Materials Research and Technology, 2023, 26: 4263-4281.
[5]Huang K, Logé R E. Microstructure and flow stress evolution during hot deformation of 304L austenitic stainless steel in variable thermomechanical conditions [J]. Materials Science and Engineering: A, 2018, 711: 600-610.
[6]柳木桐, 钟平, 刘大博, 等. 超高强度不锈钢热变形行为及加工图 [J]. 航空材料学报, 2022, 42(4): 49-56.
Liu M T, Zhong P, Liu D B, et al. Hot deformation behavior and processing map of ultrahigh strength stainless steel [J]. Journal of Aeronautical Materials,2022, 42(4): 49-56.
[7]王刚, 李志刚, 韩鹏程, 等. 304奥氏体不锈钢高温拉伸变形时的锯齿流变行为 [J]. 机械工程材料, 2012, 36(6): 64-67.
Wang G, Li Z G, Han P C, et al. Serrated flow behavior of 304 austenitic stainless steel during high temperature tension deformation [J]. Materials for Mechanical Engineering,2012, 36(6): 64-67.
[8]高建斌, 刘洁, 王晓军. 304 L不锈钢高温变形组织的演化 [J]. 铸造设备与工艺, 2014(2): 45-47.
Gao J B, Liu J, Wang X J. Microstructure evolution of 304L stainless steel during hot deformation [J]. Foundry Equipment & Technology,2014(2): 45-47.
[9]宋仁伯, 项建英, 刘良元, 等. 316L不锈钢的热变形抗力模型 [J]. 机械工程材料, 2010, 34(6): 85-88.
Song R B, Xiang J Y, Liu L Y, et al. Hot deformation resistance model of 316L stainless steel [J]. Materials for Mechanical Engineering,2010, 34(6): 85-88.
[10]赵慧俊, 王宝雨, 刘钢, 等. 基于球化机理的TA15钛合金热变形统一本构模型 [J]. 工程科学学报, 2014, 36(7): 925-930.
Zhao H J, Wang B Y, Liu G, et al. Unified constitutive model of TA15 titanium alloy in hot deformation based onthe globularization mechanism [J]. Chinese Journal of Engineering,2014, 36(7): 925-930.
[11]孙越, 孙勇, 杨勇, 等. TC21钛合金热压缩本构方程及热加工图 [J]. 锻压技术, 2023, 48(4):242-248.
Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy [J]. Forging & Stamping Technology,2023, 48(4):242-248.
[12]Zhu F H, Xiong W, Li X F, et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy [J]. Rare Metals, 2017, 37(12): 1035-1045.
[13]曹建国, 王天聪, 李洪波, 等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系 [J]. 机械工程学报, 2016, 52(4): 90-96,102.
Cao J G, Wang T C, Li H B, et al. Hightemperature constitutive relationship of nonoriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering,2016, 52(4): 90-96,102.
[14]裴文娇, 郭训忠, 王文涛, 等. 316 L奥氏体不锈钢的高温流变行为 [J]. 塑性工程学报, 2014, 21(3): 104-110.
Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature [J]. Journal of Plasticity Engineering,2014, 21(3): 104-110.
[15]Lyu J L, Luo H Y, Liang T X. Influence of predeformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 austenitic stainless steel [J]. Nuclear Engineering & Design, 2016, 309: 1-7.
[16]Kelidari Y, Kashefi M, Mirjalili M, et al. Eddy current technique as a nondestructive method for evaluating the degree of sensitization of 304 austenitic stainless steel [J]. Corrosion Science, 2020, 173: 108742.
[17]Ma L X, Wan M, Li W D, et al. Constitutive modeling and processing map for hot deformation of Ti-15Mo-3Al-2.7Nb-0.2Si [J]. Journal of Alloys and Compounds, 2019, 808: 151759.
[18]Gao F, Li W D, Meng B, et al. Rheological law and constitutive model for superplastic deformation of Ti-6Al-4V [J]. Journal of Alloys and Compounds, 2017, 701: 177-185.
|