网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
304奥氏体不锈钢高温流动行为及应变硬化型本构方程
英文标题:High temperature flow behavior and strain hardening constitutive equation of 304 austenitic stainless steel
作者:侯东1 2 聂京凯1 2 陈国宏3 刘晓圣1 2 田一1 2 姬军1 2 韩钰1 2 
单位:(1.国网智能电网研究院有限公司 先进输电技术全国重点实验室 北京 102209   2.国网智能电网研究院有限公司 电工新材料研究所  北京 102209 3.国网安徽省电力有限公司 安徽 合肥 230009) 
关键词:304奥氏体不锈钢 热拉伸变形 应变硬化 应变速率硬化 本构方程 
分类号:TG142.71
出版年,卷(期):页码:2024,49(12):233-242
摘要:

 通过等温热拉伸实验,研究了304奥氏体不锈钢在加热温度为650~1100 ℃及应变速率为0.001~0.1 s-1条件下的热变形行为及微观组织演变规律,并建立了应变硬化型本构方程。结果表明:材料微观组织主要由奥氏体组成,800 ℃以下时在变形晶界处析出大量的M23C6型碳化物相;950 ℃以上时变形材料主要发生动态再结晶,且再结晶晶粒尺寸随温度升高而增大。304奥氏体不锈钢的流动行为对变形温度和应变速率敏感,随变形温度升高或应变速率降低,真实应力呈下降趋势;此外,材料表现出较长周期的应变硬化行为。基于材料的应变速率硬化效应及应变硬化效应,考虑温度补偿建立了预测精度较高的应变硬化型本构方程,各变形条件下模型的相关系数均在95.12%以上,平均绝对误差不超过10.48%。

 

 Abstract: Through isothermal hot tensile experiments, the hot deformation behavior and microstructure evolution laws of 304 austenitic stainless steel under the conditions of the high temperature of 650-1100 ℃ and the strain rate of 0.001-0.1 s-1, and the strain hardening constitutive equation was established. The results indicate that the microstructure of 304 austenitic stainless steel  is mainly composed of austenite, and a large amount of M23C6 carbide phases are precipitated at the deformation grain boundaries below 800 ℃. The dynamic recrystallization mainly occurs in deformed materials above 950 ℃, and the size of the recrystallized grains increases with the increasing of deformation temperature. The rheological behavior of 304 austenitic stainless steel is sensitive to deformation temperature and strain rate, and the rheological stress decreases with the increasing of deformation temperature and the decreasing of strain rate. In addition, long-period strain hardening behavior is exhibited in 304 austenitic stainless steel. Based on the strain rate hardening effect and strain hardening effect of materials, a strain hardening constitutive equation with high prediction accuracy was established considering the temperature compensation. The correlation coefficients of models under various deformation conditions are all more than 95.12%, and the average absolute errors are less than 10.48%.

 
基金项目:
基金项目:国家电网公司科技项目(5500-202158330A-0-0-00)
作者简介:
作者简介:侯东(1990-),男,硕士,高级工程师 E-mail:hd61140161@163.com
参考文献:

 
[1]Hwang B, Kim T, Ahn Y. Experimental and numerical investigation of austenitic stainless steel (304 type) slit damper structural behavior
[J]. ThinWalled Structures, 2024, 196: 111551.


 


[2]Xu S, He J S, Zhang R Z, et al. Hot deformation behaviors and dynamic softening mechanisms of 7Mo superaustenitic stainless steel with high stacking fault energy
[J]. Journal of Materials Research and Technology, 2023, 23: 1738-1752.

 


[3]Shaban G M, Eghbali B. Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel
[J]. Materials ence & Engineering A, 2018, 730: 380-390.

 


[4]Hu Y, Wang L H, Ouyang M H, et al. Hot deformation behaviors and dynamic softening mechanism of 6%Si highsilicon austenitic stainless steel
[J]. Journal of Materials Research and Technology, 2023, 26: 4263-4281.

 


[5]Huang K, Logé R E. Microstructure and flow stress evolution during hot deformation of 304L austenitic stainless steel in variable thermomechanical conditions
[J]. Materials Science and Engineering: A, 2018, 711: 600-610.

 


[6]柳木桐, 钟平, 刘大博, 等. 超高强度不锈钢热变形行为及加工图
[J]. 航空材料学报, 2022, 42(4): 49-56.

 

Liu M T, Zhong P, Liu D B, et al. Hot deformation behavior and processing map of ultrahigh strength stainless steel
[J]. Journal of Aeronautical Materials,2022, 42(4): 49-56.

 


[7]王刚, 李志刚, 韩鹏程, 等. 304奥氏体不锈钢高温拉伸变形时的锯齿流变行为
[J]. 机械工程材料, 2012, 36(6): 64-67.

 

Wang G, Li Z G, Han P C, et al. Serrated flow behavior of 304 austenitic stainless steel during high temperature tension deformation
[J]. Materials for Mechanical Engineering,2012, 36(6): 64-67.

 


[8]高建斌, 刘洁, 王晓军. 304 L不锈钢高温变形组织的演化
[J]. 铸造设备与工艺, 2014(2): 45-47.

 

Gao J B, Liu J, Wang X J. Microstructure evolution of 304L stainless steel during hot deformation
[J]. Foundry Equipment & Technology,2014(2): 45-47.

 


[9]宋仁伯, 项建英, 刘良元, 等. 316L不锈钢的热变形抗力模型
[J]. 机械工程材料, 2010, 34(6): 85-88.

 

Song R B, Xiang J Y, Liu L Y, et al. Hot deformation resistance model of 316L stainless steel
[J]. Materials for Mechanical Engineering,2010, 34(6): 85-88.

 


[10]赵慧俊, 王宝雨, 刘钢, 等. 基于球化机理的TA15钛合金热变形统一本构模型
[J]. 工程科学学报, 2014, 36(7): 925-930.

 

Zhao H J, Wang B Y, Liu G, et al. Unified constitutive model of TA15 titanium alloy in hot deformation based onthe globularization mechanism
[J]. Chinese Journal of Engineering,2014, 36(7): 925-930.

 


[11]孙越, 孙勇, 杨勇, 等. TC21钛合金热压缩本构方程及热加工图
[J]. 锻压技术, 2023, 48(4):242-248.

 

Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy
[J]. Forging & Stamping Technology,2023, 48(4):242-248.

 


[12]Zhu F H, Xiong W, Li X F, et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy
[J]. Rare Metals, 2017, 37(12): 1035-1045.

 


[13]曹建国, 王天聪, 李洪波, 等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系
[J]. 机械工程学报, 2016, 52(4): 90-96,102.

 

Cao J G, Wang T C, Li H B, et al. Hightemperature constitutive relationship of nonoriented electrical steel based on modified Arrhenius model
[J]. Journal of Mechanical Engineering,2016, 52(4): 90-96,102.

 


[14]裴文娇, 郭训忠, 王文涛, 等. 316 L奥氏体不锈钢的高温流变行为
[J]. 塑性工程学报, 2014, 21(3): 104-110.

 

Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature
[J]. Journal of Plasticity Engineering,2014, 21(3): 104-110.

 


[15]Lyu J L, Luo H Y, Liang T X. Influence of predeformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 austenitic stainless steel
[J]. Nuclear Engineering & Design, 2016, 309: 1-7.

 


[16]Kelidari Y, Kashefi M, Mirjalili M, et al. Eddy current technique as a nondestructive method for evaluating the degree of sensitization of 304 austenitic stainless steel
[J]. Corrosion Science, 2020, 173: 108742.

 


[17]Ma L X, Wan M, Li W D, et al. Constitutive modeling and processing map for hot deformation of Ti-15Mo-3Al-2.7Nb-0.2Si
[J]. Journal of Alloys and Compounds, 2019, 808: 151759.

 


[18]Gao F, Li W D, Meng B, et al. Rheological law and constitutive model for superplastic deformation of Ti-6Al-4V
[J]. Journal of Alloys and Compounds, 2017, 701: 177-185.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9