[1] 刘旺欢. 金属橡胶球铰结构的优化设计与疲劳寿命分析 [D]. 湘潭:湘潭大学, 2022.
Liu W H. Optimization Design and Fatigue Life Analysis of Rubber-metal Spherical Hinge Structure [D]. Xiangtan:Xiangtan University, 2022.
[2] Darki S, Raskatov E Y. Analysis of the hot radial forging process according to the finite element method [J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3-4): 1061-1070.
[3] 王排岗, 王晓强, 王浩杰, 等. 42CrMo钢超声滚挤压表面硬度有限元分析及参数优化 [J]. 锻压技术, 2023, 48(3):152-158.
Wang P G, Wang X Q, Wang H J, et al. Finite element analysis and parameter optimization on surface hardness of ultrasonic rolling for 42CrMo steel [J]. Forging & Stamping Technolohy, 2023, 48(3): 152-158.
[4] 李元辉, 李建军, 王顺超, 等. 铝合金薄板含胶滚压成形工艺建模及实验 [J]. 上海交通大学学报, 2022, 56(4):532-542.
Li Y H, Li J J, Wang S C, et al. Modeling and experiment on roll-hemming forming process ofaluminum alloy sheet with adhesive [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 532-542.
[5] Lu K L, Zhao G Y, Guo Z H, et al. Review on multi-pass rolling forming of thin-walled ring with complex section [J]. Journal of Physics: Conference Series, 2024, 2706(1): 12-33.
[6] Cui Y, Xu W L, Yu J M, et al. Multi-objective optimization strategy for plastic forming parameters of variable wall thickness special-shaped plate members [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(7): 273-284.
[7] 肖大志, 樊泽兴, 杨成林. 薄壁环形零件滚压成形研究 [J]. 材料科学与工艺, 2006(1): 75-77.
Xiao D Z, Fan Z X, Yang C L. Research on roll forming of annular thin-walled parts [J]. Materials Science & Technology, 2006(1): 75-77.
[8] 李留柱, 李智军, 李宏伟, 等. 高温合金薄壁W截面密封环滚压成形壁厚变化研究 [J]. 精密成形工程, 2019, 11(5): 43-49.
Li L Z, Li Z J, Li H W, et al. Wall thickness variation of a superalloy thin-walled W-seetionseal ring during roll forming [J]. Journal of Netshape Forming Engineering, 2019, 11(5): 43-49.
[9] 葛琪, 黄友剑, 邓娇, 等. 有限元仿真在高速动车组橡胶牵引球铰结构优化中的应用 [J]. 特种橡胶制品, 2021, 42(4): 43-48.
Ge Q, Huang Y J, Deng J, et al. Application of FEA simulation to structural optimization of traction bushing used for high-speed EMU[J]. Special Purpose Rubber Products, 2021, 42(4): 43-48.
[10]刘化民, 杨舒涵, 李义, 等. 推力杆球铰仿生表面改进及有限元分析 [J]. 吉林大学学报(工学版), 2023, 54(9): 2733-2740.
Liu H M, Yang S H, Li Y, et al. Thrust rod ball hinge bionic surface improvement and finite element analysis [J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 54(9): 2733-2740.
[11]康蔚. 运用载荷作用下转向架橡胶球铰力学分析及疲劳优化 [D]. 长沙:中南大学, 2022.
Kang W. Mechanical Analysis and Fatigue Optimization of Bogie Rubber Ball Hinge Under Operation Load [D]. Changsha:Central South University, 2022.
[12]荣继刚, 黄友剑, 唐先贺, 等. 预压量对橡胶球铰综合性能的影响 [J]. 特种橡胶制品, 2006(2): 36-39.
Rong J G, Huang Y J, Tang X H, et al. Effect of preload on comprehensive properties of rubber ball joints [J]. Special Purpose Rubber Products, 2006(2): 36-39.
[13]陈悦. 橡胶球铰参数化有限元法优化设计研究 [D]. 湘潭:湘潭大学, 2018.
Chen Y. Research on Optimization of Rubber Bushing with Parametric Finite Element Method [D]. Xiangtan:Xiangtan University, 2018.
[14]Kar K K, Sharma S D, Kumar P, et al. Analysis of rubber pressure molding technique to fabricate fiber reinforced plastic components [J]. Polymer Composites, 2007, 28(5): 637-649.
[15]Le T H, Chan T, Kurokawa Y, et al. Numerical simulation of deformation-induced temperature variations of a rubber ball under cyclic compression [J]. International Journal of Solids and Structures, 2022, 248: 111664.
[16]夏红勇. 牵引电机弹性球铰压装工艺 [J]. 电机技术, 2017(3): 63-65.
Xia H Y. Technology of pressing assembly of the elastie ball-hinge of traction motors [J]. Electrical Machinery Technology, 2017(3): 63-65.
[17]刘建林, 罗承俊, 廖勇, 等. 基于Abaqus的某球铰翻边工艺仿真 [J]. 科学技术创新, 2021(12): 13-14.
Liu J L, Luo C J, Liao Y, et al. Simulation of a certain ball joint flanging process based on Abaqus [J]. Science and Technology Innovation, 2021(12): 13-14.
|