网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
打偏对预穿孔自冲铆接接头的成形质量和力学性能的影响
英文标题:Effects of riveting misalignment on forming quality and mechanical properties for pre-punched self-piercing riveted joints
作者:于万元1   超2   卓2 
单位:1. 柳州职业技术大学 汽车工程学院 2. 湖南大学 整车先进设计制造技术全国重点实验室 
关键词:高强度钢 预穿孔自冲铆接 成形质量 失效机理 力学性能 
分类号:TG938
出版年,卷(期):页码:2025,50(1):156-164
摘要:

 面对日益严格的碰撞安全法规要求,钢-铝混合车身中的薄壁结构需采用多层高强度钢板,然而传统自冲铆接技术无法实现多层高强度钢板的有效连接。采用预穿孔自冲铆接技术实现了厚度为1.2 mm高强度钢DP780、厚度为1.2 mm高强度钢DP590和厚度为3.0 mm压铸铝合金AlSi10MnMg-T7的三层板连接,并系统分析了不同打偏参数对预穿孔自冲铆接接头的成形质量、力学性能和失效机理的影响。结果表明:打偏会导致铆钉与板材无法形成有效的机械互锁,导致承载能力显著下降;打偏侧的铆钉严重镦粗变形,并且无法刺穿中层钢板,仅有部分位置产生机械互锁;相较于正常对准铆接的接头的机械互锁失效,打偏接头的失效中未观察到塑性变形和材料失效;相较于正常对准铆接的接头的力学性能,打偏接头的剪切和十字拉伸峰值力分别降低了57%和52.3%以上。

 For the increasingly stringent collision safety regulations, the multi-layer high-strength steel sheets is required in the thin-walled structures of steel-aluminum hybrid bodies, however, the multi-layer high-strength steel sheets cannot be effectively joined by conventional self-piercing riveting (C-SPR) technology. Therefore, the three-layer sheet connection of high-strength steel DP780 with a thickness of 1.2 mm, high-strength steel DP590 with a thickness of 1.2 mm and die-casting aluminum alloy AlSi10MnMg-T7 with a thickness of 3.0 mm was achieved by pre-punched self-piercing riveting (PH-SPR) technology, and the influences of different riveting misalignment parameters on the forming quality, mechanical properties and failure mechanism of PH-SPR joints were analyzed systematically. The results indicate that riveting misalignment leads to the ineffective mechanical interlock between rivets and sheets, resulting in a significant decrease in load-bearing capacity. The rivets on the off side are severely deformed in upsetting and unable to penetrate the middle steel sheet, with only some positions experiencing the mechanical interlock. Compared to the mechanical interlock failure of normally aligned riveted joints, no plastic deformation or material failure is observed in the failure of misaligned joints, and compared to mechanical properties of normally aligned riveted joints, the shear and cross-tension peak forces of misaligned joints are reduced by over 57% and 52.3%, respectively.

 
基金项目:
2024年度广西高校中青年教师科研基础能力提升项目(2024KY1097)
作者简介:
作者简介:于万元(1987-),女,硕士,工程师 E-mail:ywy196364@126.com 通信作者:李 卓(1988-),男,博士,工程师 E-mail:lizhuo37320@126.com
参考文献:

 [1]  李永兵, 马运五, 楼铭, 等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56(6): 125-146.


Li Y B, Ma Y W, Lou M, et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering, 2020, 56(6): 125-146.

 

[2]  Ying L, Gao T H, Dai M H, et al. Towards joinability of thermal self-piercing riveting for AA7075-T6 aluminum alloy sheets under quasi-static loading conditions[J]. International Journal of Mechanical Sciences, 2021, 189: 105978.

 

[3]  Mori K I, Abe Y. A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(1): 1-11.

 

[4]  Li D Z, Chrysanthou A, Patel I, et al. Self-piercing riveting-A review[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 1777-1824.

 

[5]  Ma Y W, Niu S Z, He S, et al. Impact of stack orientation on self-piercing riveted and friction self-piercing riveted aluminum alloy and magnesium alloy joints[J]. Automotive Innovation, 2020, 3(3): 242-249.

 

[6]  Karim M, Jeong T, Noh W, et al. Joint quality of self-piercing riveting (SPR) and mechanical behavior under the frictional effect of various rivet coatings[J]. Journal of Manufacturing Processes, 2020, 58: 466-477.

 

[7]  Zhao H, Han L, Liu Y P, et al. Quality prediction and rivet/die selection for SPR joints with artificial neural network and genetic algorithm[J]. Journal of Manufacturing Processes, 2021, 66: 574-594.

 

[8]  Xu L J, Cui A, Yang Q. Influence of punch velocity and strength matching on the quality of SPR with half-hollow rivet based numerical simulation[A]. Proceedings of the CMME[C]. Melbourne, 2013.

 

[9]  Klein T, Kirov G, Ucsnik S. Self-piercing riveting of medium- and high-strength Al and Mg alloy sheets enabled by in-process electric resistance heating[J]. Journal of Manufacturing Science and Engineering Transactions of the Asme, 2021, 143(3): 034502.

 

[10]Zhang Y Q, Yi R G, Wang P B, et al. Self-piercing riveting of hot stamped steel and aluminum alloy sheets base on local softening zone[J]. Steel Research International, 2021, 92(4): 2000535.

 

[11]Deng L, Lou M, Li Y B, et al. Thermally assisted self-piercing riveting of AA6061-T6 to ultrahigh strength steel[J]. Journal of Manufacturing Science and Engineering Transactions of the Asme, 2019, 141(10): 101006.

 

[12]Li Q Q, Wu L J, Chen T, et al. Multi-objective optimization design of B-pillar and rocker sub-systems of battery electric vehicle[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3999-4023.

 

[13]Li Q Q, Li E, Chen T, et al. Improve the frontal crashworthiness of vehicle through the design of front rail[J]. Thin-Walled Structures, 2021, 162: 107588.

 

[14]Du Z P, Duan L B, Cheng A G, et al. Theoretical prediction and analysis of hybrid material hat-shaped tubes with strengthened corner structures under quasi-static axial loading[J]. Engineering Structures, 2021, 230: 111699.

 

[15]Mori K, Abe Y, Kato T. Self-pierce riveting of multiple steel and aluminium alloy sheets[J]. Journal of Materials Processing Technology, 2014, 214(10): 2002-2008.

 

[16]Achira S, Abe Y, Mori K. Self-pierce riveting of three thin sheets of aluminum alloy A5052 and 980 MPa steel[J]. Materials (Basel), 2022, 15(3): 1010.

 

[17]何博赟. 多层钢铝混合材料自冲铆接工艺及其接头力学性能研究[D]. 长沙: 湖南大学, 2020.

 

He B Y. Research on Self-piercing Riveting Process and Joint Mechanical Property of Multi-layer Steel and Aluminum Mixed Materials[D]. Changsha: Hunan University, 2020.

 

[18]Zhang X L, He X C, Xing B Y, et al. Pre-holed self-piercing riveting of carbon fibre reinforced polymer laminates and commercially pure titanium sheets [J]. Journal of Materials Processing Technology, 2020, 279: 116550.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9