[1] 赵帆,胡昊,刘雅政,等. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报,2022,36(1):130-135.
Zhao F, Hu H, Liu Y Z, et al. Annealing condition control based on the evolution of complex microstructure and surface decarburization in 23MnNiMoCr54 steel[J]. Materials Reports, 2022, 36(1): 130-135.
[2] 李硕,方光锦,汪青芳,等. 23MnNiMoCr54钢的热变形行为[J]. 金属热处理,2021,46(5):127-132.
Li S, Fang G J, Wang Q F, et al. Hot deformation behavior of 23MnNiMoCr54 steel[J]. Heat Treatment of Metals, 2021, 46(5): 127-132.
[3] 郭晓霞,温慧,李志豪. 高强度矿用圆环链23MnNiMoCr54钢的研发与应用[J]. 金属热处理,2021,46(2):20-25.
Guo X X, Wen H, Li Z H. Development and application of high strength circular chain 23MnNiMoCr54 steel for mining[J]. Heat Treatment of Metals, 2021, 46(2): 20-25.
[4] 葛世荣,王俊涛,宋智丽. 刮板输送机技术发展历程(一)——国外技术[J]. 中国煤炭,2024,50(2):1-12.
Ge S R, Wang J T, Song Z L. The development history of scraper conveyor technology (Part one): Foreign technology[J]. China Coal, 2024, 50(2): 1-12.
[5] 李明. 掘进机刮板运输机存在的问题及改进设计[J]. 煤炭工程,2016,48(11):134-136.
Li M. Problems and the improved design for roadheader scraper conveyor[J]. Coal Engineering, 2016, 48(11): 134-136.
[6] 李峰. 23MnNiMoCr54钢对链条质量的影响[J]. 煤矿机械,2022,43(4):101-102.
Li F. Influence of 23MnNiMoCr54 steel on chain quality[J]. Coal Mine Machinery, 2022, 43(4): 101-102.
[7] 郭嵘,梁义维,夏蕊. 煤水介质下圆环链大应变在线监测系统设计[J]. 仪表技术与传感器,2023(3):50-54.
Guo R, Liang Y W, Xia R. Design of large strain online monitoring system of ring chain in coal and water medium[J]. Instrument Technique and Sensor, 2023(3): 50-54.
[8] 闫震,王迎春,邵云亮,等. 高强度矿用圆环链腐蚀研究综述[J]. 中国煤炭,2022,48(5):47-53.
Yan Z, Wang Y C, Shao Y L, et al. Review on corrosion of high strength round link mining chain[J]. China Coal, 2022, 48(5): 47-53.
[9] 尚可超. 矿用圆环链用23MnNiMoCr54钢的加工工艺研究[J]. 矿山机械,2013,41(7):134-137.
Shang K C. Study on processing technology of steel 23MnNiCrMo54 used for mine round-link chain[J]. Mining & Processing Equipment, 2013, 41(7): 134-137.
[10]赵志宏. 矿用圆环链制作工艺研究[J]. 科技风,2018(22):166.
Zhao Z H. Research on manufacturing technology of mining ring chain[J]. Science and Technology Style, 2018(22): 166.
[11]赵亚娟,陶涛,田力. 23MnNiMoCr54链条钢焊接断裂原因分析[J]. 物理测试,2014,32(3):46-49.
Zhao Y J, Tao T, Tian L. Fracture analysis on weld of 23MnNiMoCr54 steel chain[J]. Physics Examination and Testing, 2014, 32(3): 46-49.
[12]刘峥. 矿用圆环链疲劳断裂失效分析[J]. 金属加工(热加工),2015(11):66-68.
Liu Z. Fatigue fracture failure analysis of mining ring chain[J]. MW Metal Forming, 2015(11): 66-68.
[13]尚可超,骆晓炜. Φ34国产23MnNiMoCr54钢圆环链编结工艺研究[J]. 铸造技术,2016,37(6):1255-1257.
Shang K C, Luo X W. Research on knitting process for round-link chain of Φ34 domestic 23MnNiMoCr54 steel[J]. Foundry Technology, 2016, 37(6): 1255-1257.
[14]张振民,汪青芳,方光锦,等. 23MnNiMoCr54钢编链开口度大小不一分析[J]. 甘肃冶金,2020,42(2):67-70.
Zhang Z M, Wang Q F, Fang G J, et al. An analysis on the opening degree of 23MnNiMoCr54 steel in braiding chain[J]. Gansu Metallurgy, 2020, 42(2): 67-70.
[15]尚可超,杨二亮. 国产23MnNiMoCr54钢圆环链焊接工艺研究[J]. 煤矿机械,2014,35(11):140-142.
Shang K C, Yang E L. Study on welding of domestic steel 23MnNiCrMo54 used for round-link chain[J]. Coal Mine Machinery, 2014, 35(11): 140-142.
[16]王维喜,马瑞勇,武兴旺,等. 红外线测温系统在矿用高强度圆环链连续中频热处理中的应用[J]. 金属热处理,2007(5):104-105.
Wang W X, Ma R Y, Wu X W, et al. Application of infrared temperature measurement system in continuous medium frequency heat treatment of high-tensile steel round link chains for mining[J]. Heat Treatment of Metals, 2007(5): 104-105.
[17]朱斌, 张楠. 矿用高强度圆环链损伤机理及寿命预测[J]. 辽宁工程技术大学学报(自然科学版),2013,32(11):1493-1496.
Zhu B, Zhang N. Damage mechanism and life prediction of high-intensity ring chain for mining[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(11): 1493-1496.
[18]高平.R4s级系泊链钢腐蚀疲劳性能研究[D]. 镇江:江苏科技大学,2010.
Gao P. Study on Properties of Corrosion Fatigue of Class R4s Mooring Chain Steel[D]. Zhenjiang: Jiangsu University of Science and Technology, 2010.
[19]彭世丹. 高强度矿用紧凑链立环应力腐蚀断裂行为研究[J]. 武汉工程职业技术学院学报,2022,34(3):21-25.
Peng S D. Study on stress corrosion fracture behavior of high strength mine compact chain vertical ring[J]. Journal of Wuhan Engineering Institute, 2022, 34(3): 21-25.
[20]孙越,孙勇,杨勇,等. TC21钛合金热压缩本构方程及热加工图[J]. 锻压技术,2023,48(4):242-248.
Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy [J]. Forging & Stamping Technology, 2023, 48(4): 242-248.
[21]王稳,罗锐,苗现华,等. 超超临界火电用奥氏体耐热钢的热变形行为[J]. 塑性工程学报,2018,25(6):154-160.
Wang W, Luo R, Miao X H, et al. Hot deformation behavior of austenitic heat resistant steel for ultra-supercritical thermal power [J]. Journal of Plasticity Engineering, 2018, 25(6): 154-160.
[22]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science Journal, 1979, 13: 187-194.
[23]Chen Z Y, Zhang Q, Li Q A, et al. Hot deformation behavior and dynamic precipitation characteristics of Mg-Gd-Nd(-Sm)-Zr alloys[J]. Journal of Materials Research and Technology, 2021, 15: 5582-5596.
[24]樊翠林. Fe-15Cr-27Ni-4Al-2Mo-0.6Nb奥氏体耐热钢的热变形行为研究[D]. 洛阳:河南科技大学,2022.
Fan C L. Study on Hot Deformation Behavior of Fe-15Cr-27Ni-4Al-2Mo-0.6Nb Austenitic Heat-resistant Steel[D]. Luoyang: Henan University of Science and Technology, 2022.
[25]吴勇. 23MnNiMoCr54钢的热变形及热处理工艺研究[D]. 马鞍山:安徽工业大学,2016.
Wu Y. Hot Deformation Behavior and Heat Treatment Technology of 23MnNiMoCr54[D]. Ma′anshan: Anhui University of Technology, 2016.
[26]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258.
[27]Han Y, Liu G W, Zou D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science and Engineering: A, 2013, 565: 342-350.
[28]Son K T, Kim M H, Kim S W, et al. Evaluation of hot deformation characteristics in modified AA5052 using processing map and activation energy map under deformation heating[J]. Journal of Alloys and Compounds, 2018, 740: 96-108.
[29]朱强,张自昂,张林福,等. 一种镍钴基高温合金热变形行为研究[J]. 锻压技术,2024,49(7):57-63.
Zhu Q, Zhang Z A, Zhang L F, et al. Study on hot deformation behavior of a Ni-Co-based superalloy [J]. Forging & Stamping Technology, 2024, 49(7): 57-63.
|