网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镍基合金600裂尖蠕变率对应力腐蚀裂纹扩展速率的影响
英文标题:Effect of creep rate at crack tip on stress corrosion crack propagation rate for nickel-based alloy 600
作者:  杨宏亮1   河2   正2 张雨彪2 
单位:1.西安科技大学 工程训练中心 2. 西安科技大学 机械工程学院 
关键词:镍基合金600 应力腐蚀开裂 裂纹扩展速率 应变率 应力强度因子 蠕变率 
分类号:TG404
出版年,卷(期):页码:2025,50(1):231-238
摘要:

 为了简化镍基合金600的应力腐蚀裂纹扩展速率定量计算模型,在分析Ford-Andresen模型的基础上,以应力腐蚀裂纹尖端的蠕变率作为裂纹扩展的主要驱动力,提出以材料裂尖蠕变率代替Ford-Andresen模型中的裂尖应变率,获得以裂尖蠕变率为力学参量的应力腐蚀裂纹扩展速率定量预测模型。以镍基合金600的蠕变特性及其力学参量为基础,通过有限元模拟获得裂尖应力与裂尖应力强度因子的关系,进一步简化并建立了以裂尖应力强度因子为表征的蠕变率定量计算模型。结果表明:镍基合金600的蠕变应力指数和蠕变系数越大,裂尖蠕变率越大,增大了裂纹扩展驱动力,加速了裂纹扩展,且材料的硬化指数对裂尖蠕变率和裂纹扩展速率的影响较大,但裂纹扩展速率随着裂尖电流衰减指数的增大而减小;以应力强度因子为力学参量的裂纹扩展速率计算模型不仅简化了裂尖应变率的计算,而且也在一定程度上解决了裂尖应变率难以准确获得的问题。

 

  In order to simplify the quantitative calculation model of stress corrosion crack (SCC) propagation rate for nickel-based alloy 600, based on the analysis of Ford-Andresen model, creep rate at tip of SCC was taken as main driving force for crack propagation. Then, the material crack tip creep rate was proposed to replace the crack tip strain rate in the Ford-Andresen model, and a quantitative prediction model for SCC propagation rate with the crack tip creep rate as the mechanical parameter was obtained. Furthermore, based on creep characteristics and mechanical parameters of nickel-based alloy 600, the relationship between crack tip stress and crack tip stress intensity factor was obtained by finite element simulation, and a quantitative calculation model for creep rate characterized by crack tip stress intensity factor was further simplified and established. The results show that the larger the creep stress index and creep coefficient of nickel-based alloy 600, the higher the crack tip creep rate, which increases the driving force of crack propagation and accelerates the crack propagation. The hardening index of the material has a significant impact on crack tip creep rate and crack propagation rate, but crack propagation rate decreases with the increasing of crack tip current decay index. The crack propagation rate calculation model based on stress intensity factor as a mechanical parameter not only simplifies the calculation of crack tip strain rate, but also solves the problem of difficult to accurately obtain crack tip strain rate to a certain extent. 

基金项目:
陕西省自然科学基础研究计划项目(2023-JC-YB-451);国家自然科学基金资助项目(52075434)
作者简介:
作者简介:杨宏亮(1981-),男,博士,工程师 E-mail:hl_yang@163.com
参考文献:

 [1]  Du D H, Song M, Chen K, et al. Effect of deformation level and orientation on SCC of 316L stainlesssteel in simulated light water environments[J]. Journal of Nuclear Materials, 2020, 531: 152038. 


 

[2]  朱忠亮, 马辰昊, 李宇旸, 等. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.

Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 ℃[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4): 655-661.

 

[3]  Hua F H, Rebak R B. The role of hydrogen and creep in intergranular stress corrosion cracking of alloy 600 and alloy 690 in PWR primary water environments[J]. Environment-Induced Cracking of Materials, 2008, 2: 123-141.

 

[4]  温建锋, 轩福贞, 涂善东. 高温构件蠕变损伤与裂纹扩展预测研究新进展[J]. 压力容器, 2019, 36(2): 38-50.

Wen J F, Xuan F Z, Tu S D. Advances in predictions of creep damage and crack growth in components under high temperatures[J]. Pressure Vessel Technology, 2019, 36(2): 38-50.

 

[5]  李凯尚, 王润梓, 张显程, 等. 基于多尺度建模方法的蠕变-疲劳寿命预测[J]. 压力容器, 2021, 38(11): 73-81.

Li K S, Wang R Z, Zhang X C, et al. Creep-fatigue life prediction based on multi-scale modelling approach[J]. Pressure Vessel Technology, 2021, 38(11): 73-81.

 

[6]  张显程, 王润梓, 涂善东, 等. 工程损伤理论:内涵、挑战与展望[J]. 机械工程学报, 2023, 59(16): 2-17.

Zhang X C, Wang R Z, Tu S D, et al. Engineering damage theory: Connotation, challenge and prospect[J]. Journal of Mechanical Engineering, 2023, 59(16): 2-17.

 

[7]  陶贤超, 高永建, 赵鹏, 等. 反应堆压力容器材料压缩蠕变性能及变形机制研究[J]. 压力容器, 2022, 39(7): 1-14.

Tao X C, Gao Y J, Zhao P, et al. Compressive creep behavior and deformation mechanism of the material in reactor pressure vessel[J]. Pressure Vessel Technology, 2022, 39(7): 1-14.

 

[8]  Ford F P. Mechanisms of environmentally-assisted cracking[J]. International Journal of Pressure Vessels and Piping, 1989, 40(55): 343-362.

 

[9]  Shoji T, Suzuki S, Ballinger R G. Theoretical prediction of SCC growth behavior-threshold and plateau growth rate[A]. Proceedings of the 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems[C]. Breckinridge, 1995.

 

[10]Yang H L, Xue H. Effect of cold working on crack growth rate of environmentally assisted cracking of 316L SS[J]. Structures, 2020, 28: 446-455.

 

[11]Xue H, Zhao D, Peng Q J, et al. Effects of material plasticity of nickel base alloy on stress-strain field at tip of stress corrosion cracking[J]. Material Engineering, 2011, 5: 17-20.

 

[12]Yang F Q, Xue H, Zhao L Y, et al. Influence of nickel-based alloys′ mechanical properties on mechanochemical effect at crack tip in high temperature water environments[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1641-1646.

 

[13]GB/T 4161—2007, 金属材料  平面应变断裂韧度KIC试验方法[S].

GB/T 4161—2007, Metallic materials—Determination of plane-strain fracture toughness [S].

 

[14]Meisnar M, Moody M, Sergio L P. Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels[J]. Corrosion Science, 2015, 98: 661-671.

 

[15]Chen K, Wang J M, Du D H, et al. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water[J]. Journal of Nuclear Materials, 2018, 502: 13-21.

 

[16]Peng Q J, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water[J]. Nuclear Material, 2004, 324: 52-61.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9