[1] Du D H, Song M, Chen K, et al. Effect of deformation level and orientation on SCC of 316L stainlesssteel in simulated light water environments[J]. Journal of Nuclear Materials, 2020, 531: 152038.
[2] 朱忠亮, 马辰昊, 李宇旸, 等. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.
Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 ℃[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4): 655-661.
[3] Hua F H, Rebak R B. The role of hydrogen and creep in intergranular stress corrosion cracking of alloy 600 and alloy 690 in PWR primary water environments[J]. Environment-Induced Cracking of Materials, 2008, 2: 123-141.
[4] 温建锋, 轩福贞, 涂善东. 高温构件蠕变损伤与裂纹扩展预测研究新进展[J]. 压力容器, 2019, 36(2): 38-50.
Wen J F, Xuan F Z, Tu S D. Advances in predictions of creep damage and crack growth in components under high temperatures[J]. Pressure Vessel Technology, 2019, 36(2): 38-50.
[5] 李凯尚, 王润梓, 张显程, 等. 基于多尺度建模方法的蠕变-疲劳寿命预测[J]. 压力容器, 2021, 38(11): 73-81.
Li K S, Wang R Z, Zhang X C, et al. Creep-fatigue life prediction based on multi-scale modelling approach[J]. Pressure Vessel Technology, 2021, 38(11): 73-81.
[6] 张显程, 王润梓, 涂善东, 等. 工程损伤理论:内涵、挑战与展望[J]. 机械工程学报, 2023, 59(16): 2-17.
Zhang X C, Wang R Z, Tu S D, et al. Engineering damage theory: Connotation, challenge and prospect[J]. Journal of Mechanical Engineering, 2023, 59(16): 2-17.
[7] 陶贤超, 高永建, 赵鹏, 等. 反应堆压力容器材料压缩蠕变性能及变形机制研究[J]. 压力容器, 2022, 39(7): 1-14.
Tao X C, Gao Y J, Zhao P, et al. Compressive creep behavior and deformation mechanism of the material in reactor pressure vessel[J]. Pressure Vessel Technology, 2022, 39(7): 1-14.
[8] Ford F P. Mechanisms of environmentally-assisted cracking[J]. International Journal of Pressure Vessels and Piping, 1989, 40(55): 343-362.
[9] Shoji T, Suzuki S, Ballinger R G. Theoretical prediction of SCC growth behavior-threshold and plateau growth rate[A]. Proceedings of the 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems[C]. Breckinridge, 1995.
[10]Yang H L, Xue H. Effect of cold working on crack growth rate of environmentally assisted cracking of 316L SS[J]. Structures, 2020, 28: 446-455.
[11]Xue H, Zhao D, Peng Q J, et al. Effects of material plasticity of nickel base alloy on stress-strain field at tip of stress corrosion cracking[J]. Material Engineering, 2011, 5: 17-20.
[12]Yang F Q, Xue H, Zhao L Y, et al. Influence of nickel-based alloys′ mechanical properties on mechanochemical effect at crack tip in high temperature water environments[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1641-1646.
[13]GB/T 4161—2007, 金属材料 平面应变断裂韧度KIC试验方法[S].
GB/T 4161—2007, Metallic materials—Determination of plane-strain fracture toughness [S].
[14]Meisnar M, Moody M, Sergio L P. Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels[J]. Corrosion Science, 2015, 98: 661-671.
[15]Chen K, Wang J M, Du D H, et al. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water[J]. Journal of Nuclear Materials, 2018, 502: 13-21.
[16]Peng Q J, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water[J]. Nuclear Material, 2004, 324: 52-61.
|