网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Arrhenius方程和机器学习的GH4742高温合金本构关系对比
英文标题:Comparison on constitutive relationship of superalloy GH4742 based on Arrhenius equation and machine learning
作者:冯彦成1 王松辉1 2 3 黎汝栋1   晓1 王文珂4   东1   海1 葛金锋1 
单位:1. 贵州安大航空锻造有限责任公司 2. 贵州科学院 3. 中国科学院金属研究所 4. 哈尔滨工业大学 材料科学与工程学院 
关键词:GH4742高温合金 热变形行为 Arrhenius模型 支持向量机 GWO-BP网络 
分类号:TG306
出版年,卷(期):页码:2025,50(1):260-271
摘要:

 基于GH4742高温合金在应变速率为0.001~1 s-1、变形温度为950~1160 ℃及高度压下率为60%条件下的等温恒应变速率压缩试验,分析其流动应力行为,并分别构建了合金的Arrhenius方程、支持向量机和GWO-BP网络本构模型。研究结果表明,GH4742高温合金的流动应力曲线在高应变速率、低变形温度下呈现明显的软化现象;随着应变速率的降低和变形温度的升高,流动应力曲线逐渐呈现稳态流动特征。峰值应力和应变补偿Arrhenius模型的相关系数分别为0.993和0.991,平均绝对相对误差分别为8.986%和9.813%。测试样本支持向量机模型的相关系数为0.997,平均绝对相对误差为5.626%;测试样本GWO-BP模型的相关系数为0.997,平均绝对相对误差为5.471%。支持向量机和GWO-BP模型具有更高的预测精度,能更好地描述GH4742高温合金的高温流动行为。

 Based on the isothermal constant strain rate compression tests of superalloy GH4742 at strain rates of 0.001-1 s-1, deformation temperatures of 950-1160 ℃, and high reduction rate of 60%, its rheological stress behavior was analyzed, and Arrhenius equation, support vector machine and GWO-BP network constitutive models of the alloy were constructed respectively. The results show that the rheological stress curve of superalloy GH4742 presents a significant softening phenomenon at high strain rates and low deformation temperatures. As the strain rate decreases and the deformation temperature increases, the rheological stress curve gradually shows steady-state flow characteristics. The correlation coefficients of the peak stress and strain compensation Arrhenius models are 0.993 and 0.991, respectively, and the average absolute relative errors are 8.986% and 9.813%, respectively. The correlation coefficient of the test sample support vector machine model is 0.997, and the average absolute relative error is 5.626%. While the correlation coefficient of the test sample GWO-BP model is 0.997, and the average absolute relative error is 5.471%. Thus, support vector machine and GWO-BP models have higher prediction accuracy and can better describe the high-temperature rheological behavior of GH4742 superalloy.

基金项目:
国家重点研发计划资助项目(2022YFB3706904);国家科技重大专项资助项目(2024ZD0600100);贵州省高层次创新型人才项目(GCC[2023]098);贵州省科技计划项目(ZZSG[2024]016);安顺市科技计划项目(安市科工[2023]1号)
作者简介:
作者简介:冯彦成(1976-),男,硕士,高级工程师 E-mail:fengyancheng@126.com 通信作者:王松辉(1991-),男,博士,工程师 E-mail:wangsonghui91@126.com
参考文献:

 [1]  Zhang M X, Zhang B J, Jiao X Y, et al. Hot deformation behaviors and microstructure evolution of a supersaturated nickel-based superalloy[J]. Materials Characterization, 2024, 211: 113915.


 

[2]  张北江, 赵光普, 胥国华, 等. GH742合金热变形行为与微观组织演化[J]. 金属学报, 2005, 41(11): 1207-1214.

Zhang B J, Zhao G P, Xu G H, et al. Hot deformation behavior and microstructure evolution of superalloy GH742[J]. Acta Metallurgica Sinica, 2005, 41(11): 1207-1214.

 

[3]  Zhang W W, Liu X G, Du Q, et al. Microstructure evolution in GH4742 superalloy by combining hot deformation and heat treatment[J]. Journal of Materials Research and Technology, 2023, 23: 13-35. 

 

[4]  秦鹤勇, 李振团, 赵光普, 等. 固溶温度对GH4742合金力学性能及γ′相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.

Qin H Y, Li Z T, Zhao G P, et al. Effect of solution temperature on mechanical properties and γ′ phase of GH4742 superalloy[J]. Chinese Journal of Materials Research, 2023, 37(7): 502-510.

 

[5]  Xu H, Yang S F, Wang E H, et al. Cognition on oxidation behavior of Ni-based superalloy GH4742 when exposed to water vapor[J]. Journal of Materials Science and Technology, 2024, 174: 15-22.

 

[6]  Kong W W, Yuan C, Zhang B N, et al. Investigation on low-cycle fatigue behaviors of wrought superalloy GH4742 at room-temperature and 700 ℃[J]. Materials Science and Engineering A, 2019, 751: 226-236. 

 

[7]  Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4): 1733-1759.

 

[8]  贡宣洋, 张海燕, 赵忠. GH4169合金DP工艺中的热变形行为及应变补偿本构模型[J]. 兵器材料科学与工程, 2024, 47(3): 1-7.

Gong X Y, Zhang H Y, Zhao Z. Thermal deformation behavior and strain compensation constitutive model of GH4169 alloy during DP[J]. Ordnance Material Science and Engineering, 2024, 47(3): 1-7.

 

[9]  Lu C Y, Shi J, Wang J. Physically based constitutive modeling for Ti17 alloy with original basketweave microstructure in β forging: A comparison of three approaches[J]. Materials Characterization, 2021, 181: 111455.

 

[10]Fu C Z, Tao C C, Huang H J, et al. Exploring microstructure evolution and machine-learning methods based on SCAT-CIWOA-BP-DMM theory during hot deformation of 56Ni-32Ti-12Hf alloy[J]. Intermetallics, 2024, 171: 108342.

 

[11]He D G, Lin Y C, Chen J, et al. Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates[J]. Materials and Design, 2018, 154: 51-62.

 

[12]唐江凌, 蔡从中, 皇思洁, 等. Al-Cu-Mg-Ag合金强度性能的支持向量回归预测[J]. 航空材料学报, 2012, 32(5): 92-96.

Tang J L, Cai C Z, Huang S J, et al. Strength prediction for Al-Cu-Mg-Ag alloy based on support vector regression[J]. Journal of Aeronautical Materials, 2012, 32(5): 92-96. 

 

[13]Desu R K, Guntuku S C, Aditya B, et al. Support vector regression based flow stress prediction in austenitic stainless steel 304[J]. Procedia Materials Science, 2014, 6: 368-375.

 

[14]Limbadri K, Pankaj W, Suresh K, et al. Flow stress modeling of tube and slab route sheets of zircaloy-4 using machine learning techniques and Arrhenius type constitutive equations[J]. Journal of Materials Engineering and Performance, 2022, 32(2): 462-474.

 

[15]Ding F J, Jia X D, Hong T J, et al. Prediction model on flow stress of 6061 aluminum alloy sheet based on GA-BP and PSO-BP neural networks[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1840-1853.

 

[16]Tian Y, Yu J Q, Zhao A J. Predictive model of energy consumption for office building by using improved GWO-BP[J]. Energy Reports, 2020, 6: 620-627.

 

[17]Ding G P, Hou S J. CFRP drive shaft damage identification and localization based on FBG sensing network and GWO-BP neural networks[J]. Optical Fiber Technology, 2024, 82: 103631.

 

[18]郭萃, 石云波, 温晓杰, 等. 基于GWO-BP方法的加速度计动态模型研究[J]. 测控技术, 2023, 42(8): 50-55.

Guo C, Shi Y B, Wen X J, et al. Dynamic model of accelerometer based on GWO-BP method[J]. Measurement and Control Technology, 2023, 42(8): 50-55.

 

[19]梁强, 张贤明, 李平, 等. 改进Zerilli-Armstrong、Arrhenius和GWO-BPNN模型对HAl61-4-3-1合金高温流变应力的预测[J]. 材料热处理学报, 2022, 43(9): 193-204.

Liang Q, Zhang X M, Li P, et al. Prediction of high temperature flow stress of HAl61-4-3-1 alloy by modified Zerilli-Armstrong, Arrhenius and GWO-BPNN models[J]. Transactions of Materials and Heat Treatment, 2022, 43(9): 193-204.

 

[20]Gai Y C, Zhang R, Zhou Z J, et al. Effect of C content on microstructure and hot deformation behavior of a Ni-based superalloy[J]. Journal of Alloys and Compounds, 2023, 965: 171453.

 

[21]刘晓燕, 张习祎, 陈秀全, 等. 热挤压态FGH96合金热变形行为及变形机制研究[J]. 稀有金属, 2024, 48(8): 1108-1119.

Liu X Y, Zhang X Y, Chen X Q, et al. Hot deformation behavior and deformation mechanism of hot extruded FGH96 superalloy[J]. Chinese Journal of Rare Metals, 2024, 48(8): 1108-1119.

 

[22]张明赫, 冯运莉, 田志伟, 等. V-Nb微合金化Q420B大规格角钢高温流变应力研究[J]. 锻压技术, 2024, 49(4): 226-234.

Zhang M H, Feng Y L, Tian Z W, et al. Study on high temperature flow stress of V-Nb microalloying Q420B angle steel with large size[J]. Forging & Stamping Technology, 2024, 49(4): 226-234.

 

[23]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

 

[24]Lu C Y, Wang J, Zhang P. Flow behavior analysis and flow stress modeling of Ti17 alloy in β forging process[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7668-7681.

 

[25]陈由红, 兰博, 李金栋, 等. 挤压态GH710合金本构模型研究及应用验证[J]. 稀有金属, 2023, 47(7): 986-994.

Chen Y H, Lan B, Li J D, et al. Material characterization and validation for constitutive model of as-extruded GH710 alloy [J]. Chinese Journal of Rare Metals, 2023, 47(7): 986-994.

 

[26]Jiang Y Q, Guo Y W, Wang M B, et al. Hot deformation and constitutive modeling of a Ti-Al-Sn-Zr-Mo-Cr-Nb alloy[J]. Materials Today Communications, 2024, 40: 110037.

 

[27]Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.

 

[28]Li H Y, Wang X J, Song Y H, et al. Physical metallurgy guided machine learning to predict hot deformation mechanism of stainless steel[J]. Materials Today Communications, 2023, 36: 106779.

 

[29]Suykens J, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9: 293-300.

 

[30]李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.

Li H. Statistical Learning Methods[M]. Beijing: Tsinghua University Press, 2012.

 

[31]Wu Z D, Wang X C, Yang Q, et al. Deformation resistance prediction of tandem cold rolling based on grey wolf optimization and support vector regression[J]. Journal of Iron and Steel Research International, 2023, 30: 1803-1820.

 

[32]Hatta N M, Zain A M, Sallehuddin R, et al. Recent studies on optimisation method of grey wolf optimiser (GWO): A review (2014-2017) [J]. Artificial Intelligence Review, 2019, 52: 2651-2683.

 

[33]Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.

 

[34]Ghalambaz M, Yengejeh R J, Davami A H. Building energy optimization using grey wolf optimizer (GWO) [J]. Case Studies in Thermal Engineering, 2021, 27: 101250.

 

[35]Amitava R, Mohammad A, Satyabrata D, et al. Constitutive modeling for predicting high-temperature flow behavior in aluminum 5083+10wt pct SiCp composite[J]. Metallurgical and Materials Transactions B, 2019, 50: 1061-1076.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9