网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态铝镁合金棒坯镦粗裂纹缺陷分析及消除措施
英文标题:Analysis and elimination measures on upsetting crack defects for as-cast Al-Mg alloy bar billet
作者:王玉弟1 房超2 3 刘恒1 李保先1 亓效刚3 王广春2 3 
单位:1.山东瑞烨新材料有限公司 2.山东大学 金属成形高端装备与先进技术全国重点实验室 3.山东大学 材料液固结构演变与加工教育部重点实验室 
关键词:大型环件 5083铝镁合金 镦粗裂纹 热处理 元素偏析 
分类号:TG316
出版年,卷(期):页码:2025,50(2):1-6
摘要:

针对某大型环件用铝镁合金铸棒镦粗制坯过程中的开裂问题,通过表征分析裂纹缺陷处的合金元素和第二相化合物发现,裂纹区域存在较为明显的元素偏析现象,聚集了大量的Si、Mg元素,其组成的第二相化合物Mg2Si与基体的结合强度相对较低,当变形程度较大时,坯料外圆拉应力明显增加,导致Mg2Si相较多的区域萌生裂纹,并在继续塑性变形的过程中发生开裂。进一步研究发现,锻前热处理温度对Mg2Si相的析出量及形貌具有直接影响,将锻前加热温度提高至540 ℃并保温8 h,可有效调控Mg2Si相的析出量,从而避免铸态铝镁合金棒坯镦粗过程中裂纹的产生。

For the cracking problem during the upsetting process of Al-Mg alloy cast bars for a large ring, through the characterization analysis on alloying elements and second-phase compounds at the crack defect, it was found that there was a significant element segregation phenomenon in the crack area with a large amount of Si and Mg elements gathered,the  formed second-phase compound Mg2Si had a relatively low bonding strength with the matrix. When the deformation degree was large, the tensile stress on the outer circle of billet increased significantly, leading to the initiation of cracks in the areas with more Mg2Si phase and cracking during the process of continuous plastic deformation. The further study found that the heat treatment temperature before forging had a direct impact on the precipitation amount and morphology of Mg2Si phase. If the heating temperature before forging was raised to 540 ℃ and held for 8 h, the precipitation amount of Mg2Si phase was effectively regulated, and the occurrence of cracks during the upsetting process of as-cast Al-Mg alloy bar billets was avoided.

基金项目:
山东省科技型中小企业创新能力提升工程项目(2022TSGC2122);山东省高端铝制造与应用创新创业共同体项目(BZGDL-XM-2024-02);国家自然科学基金资助项目(52475371)
作者简介:
作者简介:王玉弟(1969-),男,硕士,高级工程师,E-mail:wangydjn@126.com;通信作者:王广春(1966-),男,博士,教授,E-mail:wgc@sdu.edu.cn
参考文献:
[1]郭会光. 大型锻件制造核心技术的进展[J]. 金属加工(热加工), 2010(1): 19-20.

 

Guo H G. Progress of core technology in manufacturing large forgings[J]. MW Metal Forming, 2010(1):19-20.

 

[2]Alexander D T L, Greer A L. Solid-state intermetallic phase tranformations in 3XXX aluminium alloys[J]. Acta Materialia, 2002, 50(10):2571-2583.

 

[3]蒙玲, 赵启忠, 李春流,等. 均匀化处理对5083铝合金铸锭组织与性能的影响[J]. 金属热处理, 2019, 44(4): 132-140.

 

Meng L,Zhao Q Z,Li C L,et al. Effect of homogenization on microstructure and properties of 5083 aluminium alloy ingot[J]. Heat Treatment of Metals, 2019, 44(4): 132-140.

 

[4]王宇,曹零勇,李俊鹏,等. 均匀化工艺对5182铝合金铸锭组织的影响[J]. 材料热处理学报, 2015, 36(S1): 101-106.

 

Wang Y, Cao L Y, Li J P, et al. Effect of different homogenization processes on microstructure of 5182 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(S1): 101-106.

 

[5]刘芃成,马彦,张晓嵩,等.激光局部热处理对5052-H32铝合金板材单向拉伸性能和成形性能的影响规律[J]. 锻压技术, 2023, 48(9): 204-212.

 

Liu P C, Ma Y, Zhang X S, et al. Influence law of laser local heat treatment on uniaxial tensile and forming properties for 5052-H32 aluminum alloy sheet[J]. Forging & Stamping Technology, 2023, 48(9): 204-212.

 

[6]林化强,邓运来,戴青松. 加热工艺对5083铝合金轧制组织与性能的影响[J]. 热加工工艺, 2018, 47(1): 147-149.

 

Lin H Q, Deng Y L, Dai Q S. Effects of heating process on microstructures and properties of rolled 5083 Al alloy[J]. Hot Working Technology, 2018, 47(1): 147-149.

 

[7]孟凡林,周崇. 冷变形及退火对船用5083铝合金板腐蚀性能的影响[J]. 轻合金加工技术, 2015, 43(10): 35-39.

 

Meng F L, Zhou C. Effect of cold deformation and annealing on corrosion property of 5083 aluminum alloy marine sheet[J]. Light Alloy Fabrication Technology, 2015, 43(10): 35-39.

 

[8]肖晓玲, 刘宏伟, 詹浩,等. 5083铝合金组织中第二相的形态及微观结构[J]. 中国有色金属学报, 2018, 28(12): 2441-2449.

 

Xiao X L, Liu H W, Zhan H, et al. Morphology and microstructure of second-phases in 5083 aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2018, 28(12): 2441-2449.

 

[9]吴楠,杨旭,岳凯,等. 5083 合金不同均质制度的组织和性能研究对比[J]. 有色金属加工, 2021, 50(1): 67-70.

 

Wu N, Yang X, Yue K, et al. Comparative study on microstructure and properties of 5083 alloy with different homogenization systems[J]. Nonferrous Metals Processing, 2021, 50(1): 67-70.

 

[10]Engler O,Miller-Jupp S.Control of second-phase particles in the Al-Mg-Mn alloy AA 5083[J]. Journal of Alloys and Compounds, 2016, 689: 998-1010.

 

[11]惠媛媛. 圆环镦粗成形有限元模拟研究[D].西安:西安理工大学, 2005.

 

Hui Y Y. The FEM Simulation of Ring Upsetting Process[D]. Xi′an: Xi′an University of Technology, 2005.

 

[12]赵彦莉. 圆柱体锻压件镦粗过程中温度场应力场的有限元模拟分析[J]. 内蒙古煤炭经济, 2011(4): 48-50.

 

Zhao Y L. Finite element simulation analysis of temperature and stress field during the upsetting process of a cylinder forging[J]. Inner Mongolia Coal Economy, 2011(4): 48-50.

 

[13]Grasserbauer J, Weiensteiner I, Falkinger G, et al. Influence of Fe and Mn on the microstructure formation in 5xxx alloys—Part I: Evolution of primary and secondary phases[J]. Materials, 2021, 14(12):14123204.

 

[14]Engler O, Liu Z S, Kuhnke K. Impact of homogenization on particles in the Al-Mg-Mn alloy AA 5454-Experiment and simulation[J]. Journal of Alloys and Compounds, 2013, 560: 111-122.

 

[15]黄元春,吴镇力,王旭成,等. 均匀化热处理对5083铝合金难溶相与晶粒尺寸的影响[J].材料工程,2023,51(4):103-112.

 

Huang Y C, Wu Z L, Wang X C, et al. Effect of homogenization heat treatment on refractory phase and grain size of 5083 aluminum alloy[J].Journal of Materials Engineering, 2023,51(4):103-112.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9