[1]郭会光. 大型锻件制造核心技术的进展[J]. 金属加工(热加工), 2010(1): 19-20.
Guo H G. Progress of core technology in manufacturing large forgings[J]. MW Metal Forming, 2010(1):19-20.
[2]Alexander D T L, Greer A L. Solid-state intermetallic phase tranformations in 3XXX aluminium alloys[J]. Acta Materialia, 2002, 50(10):2571-2583.
[3]蒙玲, 赵启忠, 李春流,等. 均匀化处理对5083铝合金铸锭组织与性能的影响[J]. 金属热处理, 2019, 44(4): 132-140.
Meng L,Zhao Q Z,Li C L,et al. Effect of homogenization on microstructure and properties of 5083 aluminium alloy ingot[J]. Heat Treatment of Metals, 2019, 44(4): 132-140.
[4]王宇,曹零勇,李俊鹏,等. 均匀化工艺对5182铝合金铸锭组织的影响[J]. 材料热处理学报, 2015, 36(S1): 101-106.
Wang Y, Cao L Y, Li J P, et al. Effect of different homogenization processes on microstructure of 5182 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(S1): 101-106.
[5]刘芃成,马彦,张晓嵩,等.激光局部热处理对5052-H32铝合金板材单向拉伸性能和成形性能的影响规律[J]. 锻压技术, 2023, 48(9): 204-212.
Liu P C, Ma Y, Zhang X S, et al. Influence law of laser local heat treatment on uniaxial tensile and forming properties for 5052-H32 aluminum alloy sheet[J]. Forging & Stamping Technology, 2023, 48(9): 204-212.
[6]林化强,邓运来,戴青松. 加热工艺对5083铝合金轧制组织与性能的影响[J]. 热加工工艺, 2018, 47(1): 147-149.
Lin H Q, Deng Y L, Dai Q S. Effects of heating process on microstructures and properties of rolled 5083 Al alloy[J]. Hot Working Technology, 2018, 47(1): 147-149.
[7]孟凡林,周崇. 冷变形及退火对船用5083铝合金板腐蚀性能的影响[J]. 轻合金加工技术, 2015, 43(10): 35-39.
Meng F L, Zhou C. Effect of cold deformation and annealing on corrosion property of 5083 aluminum alloy marine sheet[J]. Light Alloy Fabrication Technology, 2015, 43(10): 35-39.
[8]肖晓玲, 刘宏伟, 詹浩,等. 5083铝合金组织中第二相的形态及微观结构[J]. 中国有色金属学报, 2018, 28(12): 2441-2449.
Xiao X L, Liu H W, Zhan H, et al. Morphology and microstructure of second-phases in 5083 aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2018, 28(12): 2441-2449.
[9]吴楠,杨旭,岳凯,等. 5083 合金不同均质制度的组织和性能研究对比[J]. 有色金属加工, 2021, 50(1): 67-70.
Wu N, Yang X, Yue K, et al. Comparative study on microstructure and properties of 5083 alloy with different homogenization systems[J]. Nonferrous Metals Processing, 2021, 50(1): 67-70.
[10]Engler O,Miller-Jupp S.Control of second-phase particles in the Al-Mg-Mn alloy AA 5083[J]. Journal of Alloys and Compounds, 2016, 689: 998-1010.
[11]惠媛媛. 圆环镦粗成形有限元模拟研究[D].西安:西安理工大学, 2005.
Hui Y Y. The FEM Simulation of Ring Upsetting Process[D]. Xi′an: Xi′an University of Technology, 2005.
[12]赵彦莉. 圆柱体锻压件镦粗过程中温度场应力场的有限元模拟分析[J]. 内蒙古煤炭经济, 2011(4): 48-50.
Zhao Y L. Finite element simulation analysis of temperature and stress field during the upsetting process of a cylinder forging[J]. Inner Mongolia Coal Economy, 2011(4): 48-50.
[13]Grasserbauer J, Weiensteiner I, Falkinger G, et al. Influence of Fe and Mn on the microstructure formation in 5xxx alloys—Part I: Evolution of primary and secondary phases[J]. Materials, 2021, 14(12):14123204.
[14]Engler O, Liu Z S, Kuhnke K. Impact of homogenization on particles in the Al-Mg-Mn alloy AA 5454-Experiment and simulation[J]. Journal of Alloys and Compounds, 2013, 560: 111-122.
[15]黄元春,吴镇力,王旭成,等. 均匀化热处理对5083铝合金难溶相与晶粒尺寸的影响[J].材料工程,2023,51(4):103-112.
Huang Y C, Wu Z L, Wang X C, et al. Effect of homogenization heat treatment on refractory phase and grain size of 5083 aluminum alloy[J].Journal of Materials Engineering, 2023,51(4):103-112.
|