网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
DP590钢/玻璃纤维复合层板模压工艺优化
英文标题:Optimization on molding process for DP590 steel/glass fiber composite laminate
作者:张波1 施进科1 2 沈智2 金康1 郭平安1 王小刚1 
单位:1.中机精密成形产业技术研究院(安徽)股份有限公司 2.南昌工程学院 机械工程学院 
关键词:DP590钢 纤维复合层板 模压成形工艺 正交试验 电池包上盖 
分类号:TB332
出版年,卷(期):页码:2025,50(2):53-58
摘要:

为扩展纤维金属层板(FMLs)在汽车领域的应用,对DP590钢/玻璃纤维复合层板的模压成形工艺进行了研究。通过正交试验和单因素试验相结合的方法,对模具温度、模压压力、模压时间和预热时间等关键工艺参数进行了优化。研究结果表明:模具温度和模压压力是影响复合层板力学性能的两个主要因素,影响机制源于其对异种材料之间结合性能的影响。确定了最优的工艺参数组合为:模具温度为155 ℃、模压压力为3 MPa、模压时间为550 s以及预热时间为20 s。在最优工艺参数下生产的新能源汽车电池包上盖的平均抗拉强度与抗弯强度分别达到533与847 MPa,均满足使用要求。提出的冲压加模压复合生产工艺能够拓展纤维复合层板在汽车领域的应用场景。

To expand the application of fiber metal laminates (FMLs) in the automotive field, the molding process of DP590 steel/glass fiber composite laminates was studied. Then, the key process parameters such as mold temperature, molding pressure, molding time and preheating time were optimized by combining orthogonal experiment and single-factor experiment. The research results indicate that the mold temperature and molding pressure are the two main factors affecting the mechanical properties of the composite laminates, and their influencing mechanism stems from their impact on the bonding performance between dissimilar materials. The optimal combination of process parameters is determined as the mold temperature of 155 ℃, the molding pressure of 3 MPa, the molding time of 550 s and the preheating time of 20 s. The new energy vehicle battery pack cover produced under the optimal process parameters has an average tensile strength and bending strength of 533 and 847 MPa, respectively, both of which meet the requirements for use. The proposed stamping and molding composite production process can expand the application scenarios of fiber composite laminates in the automotive field.

基金项目:
江西省自然科学基金资助项目(20242BAB25271);江西省教育厅科技项目(GJJ201903)
作者简介:
作者简介:张波(1975-),男,学士,工程师,E-mail:zhangbo@cmipf.com;通信作者:沈智(1980-),男,博士,副教授,E-mail:nickshen009@163.com
参考文献:

[1]Vieira L M G,Dobah Y,Santos J C D, et al. Impact properties of novel natural fibre metal laminated composite materials[J]. Applied Sciences, 2022, 12(4): 1869.


 

[2]Hussain M, Imad A, Nawab Y, et al. Effect of matrix and hybrid reinforcement on fiber metal laminates under low-velocity impact loading[J]. Composite Structures, 2022, 288: 115371.

 

[3]Maryan M S,Ebrahimnezhad-Khaljiri H,Farsani R E. The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibers-epoxy composites[J]. International Journal of Fatigue,2022,154:106560.

 

[4]陶杰,李华冠,潘蕾,等.纤维金属层板的研究与发展趋势[J].南京航空航天大学学报,2015,47(5):626-636.

 

Tao J, Li H G, Pan L, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015,47(5):626-636.

 

[5]Zarezadeh M A,Liaghat G,Ahmadi H, et al. Numerical and experimental investigation of fiber metal laminates with elastomeric layers under low-velocity impact[J]. Polymer Composites, 2022, 43(4): 1936-1947.

[6]Shi Y, Pinna C, Soutis C. Impact damage characteristics of carbon fiber metal laminates: Experiments and simulation[J]. Applied Composite Materials, 2020, 27(5): 511-531.

 

[7]Ogi K, Tsutsumi M, Nasrullah B, et al. Quasi-isotropic fiber metal laminate with high specific modulus and near-zero coefficient of thermal expansion[J]. International Journal of Lightweight Materials and Manufacture, 2021, 4(1): 27-36.

 

[8]赵宗, 郑兴伟, 钱仁飞, 等. 纤维稀土镁合金超混杂层板弯曲性能及其失效机理[J]. 航空材料学报, 2021, 41(4): 157-166.

 

Zhao Z, Zheng X W, Qian R F, et al. Bending properties and failure mechanism of fiber rare earth magnesium alloy super hybrid laminates[J]. Journal of Aeronautical Materials, 2021, 41(4): 157-166.

 

[9]Li H G,Hao W,Alderliesten R, et al. The residual stress characteristics and mechanical behavior of shot peened fiber metal laminates based on the aluminium-lithium alloy[J]. Composite Structures, 2020, 254: 112858

 

[10]刘世琛, 郎利辉, 关世伟,等. 纤维增强金属层板零件充液成形过程及工艺分析[J]. 中南大学学报(自然科学版), 2019, 50(2):272-278.

 

Liu S S, Lang L H, Guan S W, et al. Investigation on hydroforming technology and process of fiber reinforced metal laminate parts[J]. Journal of Central South University (Science and Technology), 2019, 50(2):272-278.

 

[11]Mirza H A, Lang L H, Tabasum M N, et al. An investigation into the forming of fiber metal laminates with different thickness metal skins using hydromechanical deep drawing[J]. Applied Composite Materials, 2022, 29(3): 1349-1365.

 

[12]Blala H, Lang L H, Sherkatghanad E, et al. An investigation into process parameters effect on the formability of GLARE materials using stamp forming[J]. Applied Composite Materials, 2019, 26(5):1423-1436.

 

[13]Guo Y Q, Chen Z F, Li F Z, et al. Study on formability and failure modes of steel/CFRP based FMLs consisting of carbon fiber reinforced polymer prepreg and steel sheet[J]. Composite Structures, 2022, 281(5): 114980.

 

[14]Wang H, Wang Z H, Fan Y W, et al. Multi-objective lightweight design of automotive battery pack box for crashworthiness[J]. International Journal of Crashworthiness,2023, 29(2):292-307.

 

[15]孙奋丽. 汽车电池包上盖模压工艺优化研究[D]. 北京:中国机械科学研究总院集团有限公司, 2021.

 

Sun F L. Optimization of the Molding Process for the Upper Cover of Automotive Battery Pack[D]. Beijing: China Academy of Machinery Science and Technology Group Co., Ltd.,2021.

 

[16]GB/T 1447—2005, 纤维增强塑料拉伸性能试验方法[S].

 

GB/T 1447—2005, Fiber-reinforced plastics composites—Determination of tensile properties[S].

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9