[1]Zhu T, Xiao S N, Lei C, et al. Rail vehicle crashworthiness based on collision energy management: An overview[J]. International Journal of Rail Transportation, 2021, 9(2): 101-131.
[2]白中浩, 周存文, 龚超, 等. 仿生层级薄壁方管的耐撞性研究[J]. 中国公路学报, 2020, 33(1): 181-190.
Bai Z H,Zhou C W,Gong C,et al. Crashworthiness of bio-inspired hierarchical thin-walled square tubes[J]. China Journal of Highway and Transport, 2020, 33(1): 181-190.
[3]朱涛, 肖守讷, 杨超, 等. 机车车辆被动安全性研究综述[J]. 铁道学报, 2017, 39(5): 22-32.
Zhu T, Xiao S N, Yang C, et al. State-of-the-art development of passive safety of rolling stocks[J]. Journal of the China Railway Society, 2017, 39(5): 22-32.
[4]马骢瑶. 大型飞机典型货舱地板下部结构坠撞吸能特性研究[D]. 天津: 中国民航大学, 2018.
Ma C Y. Crash Characteristic for the Cargo Subfloor Structure of Civil Aircraft[D]. Tianjin: Civil Aviation University of China, 2018.
[5]周礼, 王宇, 蒋忠城, 等. 泡沫填充铝合金多胞防爬器的吸能机理[J]. 塑性工程学报, 2023, 30(2): 231-241.
Zhou L, Wang Y, Jiang Z C, et al. Energy absorption mechanism of foam-filled aluminum alloy multi-cell anti-climber[J]. Journal of Plasticity Engineering,2023, 30(2): 231-241.
[6]Gao Q C, Xiao S N, Wang X R, et al. Tool failure analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles[J]. Applied Sciences, 2023, 13(3): 1619.
[7]贺世忠, 黄科. 轨道车辆膨胀管式吸能元件吸能特性分析[J]. 机械强度, 2019, 41(4): 1006-1011.
He S Z, Huang K. Research on the energy absorption characteristics of expansion tube energy absorbing elements for rail vehicles[J]. Journal of Mechanical Strength, 2019, 41(4): 1006-1011.
[8]邹广平, 闫安石, 唱忠良, 等.金属薄壁夹层结构变形形式及吸能特性研究[J]. 机械强度, 2023, 45(5): 1249-1253.
Zou G P, Yan A S, Chang Z L, et al. Study on deformation form and energy absorption characteristics of metal thin-walled sandwich structure[J]. Journal of Mechanical Strength, 2023, 45(5): 1249-1253.
[9]许平, 杨丽婷, 姚曙光, 等. 城轨列车方锥式防爬吸能结构碰撞力学参数设计及多目标优化[J]. 中南大学学报(自然科学版), 2022, 53(5): 1689-1699.
Xu P, Yang L T, Yao S G, et al. Collision mechanics parameter design and multi-objective optimization of square cone anti-climbing energy-absorbing structure for urban rail trains[J]. Journal of Central South University(Science and Technology), 2022, 53(5): 1689-1699.
[10]袁成标, 肖守讷, 杨宝柱. 低地板列车吸能防爬装置的碰撞特性研究[J]. 机车电传动, 2018(5): 83-88.
Yuan C B, Xiao S N, Yang B Z. Study on collision properties of anti-climbing energy absorption device for low-floor vehicles[J]. Electric Drive for Locomotives, 2018(5): 83-88.
[11]曾必强, 胡远志, 谢书港. 材料应变率强化效应对结构碰撞响应的影响[A]. 第八届国际汽车交通安全学术会议论文集[C]. 芜湖, 2010.
Zeng B Q, Hu Y Z, Xie S G. Effect of strain rate strengthening on structural collision response[A]. Proceedings of the 8th International Forum of Automotive Traffic Safety[C]. Wuhu, 2010.
[12]吴鸿超, 梁增友, 冯阳, 等. 薄壁金属管在中高速冲击下的缓冲特性研究[J]. 应用力学学报, 2016, 33(2): 325-331.
Wu H C, Liang Z Y, Feng Y, et al. Energy absorption characteristics of the expansion of thin-walled circular metal tubes by middle-speed and high-speed impact of a rigid cylinder[J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 325-331.
[13]陈书剑, 肖守讷, 朱涛, 等. 5083P-O和6008-T6铝合金的应变率效应对缓冲器缓冲特性的影响[J]. 中南大学学报(自然科学版), 2019, 50(11): 2665-2675.
Chen S J, Xiao S N, Zhu T, et al. Influence of 5083P-O and 6008-T6 aluminum alloys strain rate effect on cushioning characteristics of thin-walled circular metal tube buffer[J]. Journal of Central South University(Science and Technology), 2019, 50(11): 2665-2675.
[14]吴章斌, 桂良进, 范子杰. AZ31B镁合金挤压矩形管的轴向压溃试验与吸能特性分析[J].工程力学, 2015, 32(10): 183-190.
Wu Z B, Gui L J, Fan Z J. Axial compression tests and energy absorption characteristics of extruded magnesium alloy AZ31B rectangular tubes[J]. Engineering Mechanics, 2015, 32(10): 183-190.
[15]冯悦, 肖守讷, 朱涛, 等. 考虑材料失效准则的吸能装置失效行为与碰撞特性[J]. 中南大学学报(自然科学版), 2019, 50(2): 487-496.
Feng Y, Xiao S N, Zhu T, et al. Failure behavior and collision characteristics of energy-absorbing structures considering material failure criteria[J]. Journal of Central South University(Science and Technology), 2019, 50(2): 487-496.
[16]Bhutada S, Goel M D. Study of effect of provision of cut-outs on axial collapse behaviour of circular aluminium tubes[J]. International Journal of Impact Engineering, 2023, 178(1): 104599.
[17]梁海成, 于仁杰, 崔海涛. 挤压态Mg-Gd-Y镁合金的热变形行为[J]. 机械工程学报, 2023, 59(22): 332-342.
Liang H C, Yu R J, Cui H T. Thermal deformation behavior of extruded Mg-Gd-Y magnesium alloy[J]. Journal of Mechanical Engineering, 2023, 59(22): 332-342.
[18]张斌, 郭玲梅, 汪洋, 等. TA7钛合金拉伸和压缩加载时的孪生变形行为[J]. 中国有色金属学报, 2021, 31(9): 2427-2435.
Zhang B, Guo L M, Wang Y, et al. Deformation twinning behavior of TA7 titanium alloy under tension and compression[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(9): 2427-2435.
[19]Holmen J K, Frodal B H, Hopperstad O S, et al. Strength differential effect in age hardened aluminum alloys[J]. International Journal of Plasticity, 2017, 99: 144-161.
[20]Drucker D C. Relation of experiments to mathematical theories of plasticity[J]. Journal of Applied Mechanics Transactions, 1949, 16(4): 349-357.
[21]Yoon J W, Lou Y S, Yoon J H, et al. Asymmetric yield function based on the stress invariants for pressure sensitive metals[J]. International Journal of Plasticity, 2014, 56: 184-202.
[22]Lou Y S, Yoon J W. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion[J]. International Journal of Plasticity, 2017, 99: 144-161.
[23]Hill R. Theoretical plasticity of textured aggregates[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1979, 85(1):179-191.
[24]Lou Y S, Yoon J W. Lode-dependent anisotropic-asymmetric yield function for isotropic and anisotropic hardening of pressure-insensitive materials. Part I: Quadratic function under non-associated flow rule[J]. International Journal of Plasticity, 2023, 166: 103647.
[25]Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7): 1171-1194.
[26]Bridgman P W. Studies in Large Plastic Flow and Fracture:With Special Emphasis on the Effect of Hydrostatic Pressure[M]. New York: McGraw-Hill, 1952.
|