网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
材料强度差效应对薄壁金属管缓冲特性的影响
英文标题:Influence of material strength difference effect on buffering characteristics for thin-walled metal tube
作者:王丽红1 2 郭怡培1 牛可1 2 
单位:1.郑州铁路职业技术学院 机车车辆学院 2. 河南省轨道交通智能安全工程技术研究中心 
关键词:强度差效应 薄壁金属管 缓冲特性 本构模型 压溃型 膨胀型 
分类号:U287.1
出版年,卷(期):页码:2025,50(2):75-84
摘要:

为了研究材料强度差效应对应用于轨道车辆的薄壁金属管缓冲特性的影响,分别使用了Von Mises和CPB06本构模型进行薄壁金属管轴向压缩有限元仿真分析。首先,基于薄壁金属管常用材料6082-T6铝合金的轴向缺口拉伸和缺口压缩试验结果,分别对Von Mises和CPB06本构模型进行了参数标定;其次,使用显式动力学有限元计算软件LS-DYNA开展了与试验条件一致的仿真分析,验证了本构模型参数校准的准确性;最后,针对某压溃型和膨胀型薄壁金属管开展轴向压缩特性仿真研究,并对比了是否考虑材料强度差效应对两种薄壁金属管响应特征的影响。结果表明,材料的强度差效应对压溃型薄壁金属管的变形特性、载荷特征和吸能特性均有较大影响,而对膨胀型薄壁金属管的影响相对较小。

In order to investigate the influence of material strength difference effect on the buffer characteristics of thin-walled metal tubes applied to rail vehicles, the axial compression finite element simulation analysis of thin-walled metal tubes was conducted by Von Mises and CPB06 constitutive models. Firstly, based on the axial notch tension and notch compression test results of commonly used 6082-T6 aluminum alloy for thin-wall metal tubes, Von Mises and CPB06 constitutive models were calibrated for parameters. Secondly, the simulation analysis consistent with experimental conditions was conducted by using the explicit dynamic finite element calculation software LS-DYNA to verify the accuracy of parameter calibration for the constitutive model. Finally, a simulation study was conducted on the axial compression characteristics of a certain crush-type and expansion-type thin-walled metal tubes, and the influence of considering or not considering the material strength difference effect on the response characteristics for the two thin-walled metal tubes was compared. The results show that the material strength difference effect has a significant impact on the deformation characteristics, load characteristics and energy absorption characteristics of crush-type thin-walled metal tube, and the impact on the expansion-type thin-walled metal tube is relatively small.

基金项目:
国家自然科学基金资助项目(52175123);河南省科技攻关计划项目(252102220071,242102320221)
作者简介:
作者简介:王丽红(1980-),女,硕士,副教授,E-mail:honly_lee@sina.com
参考文献:

[1]Zhu T, Xiao S N, Lei C, et al. Rail vehicle crashworthiness based on collision energy management: An overview[J]. International Journal of Rail Transportation, 2021, 9(2): 101-131.


 

[2]白中浩, 周存文, 龚超, 等. 仿生层级薄壁方管的耐撞性研究[J]. 中国公路学报, 2020, 33(1): 181-190.

 

Bai Z H,Zhou C W,Gong C,et al. Crashworthiness of bio-inspired hierarchical thin-walled square tubes[J]. China Journal of Highway and Transport, 2020, 33(1): 181-190.

 

[3]朱涛, 肖守讷, 杨超, 等. 机车车辆被动安全性研究综述[J]. 铁道学报, 2017, 39(5): 22-32.

 

Zhu T, Xiao S N, Yang C, et al. State-of-the-art development of passive safety of rolling stocks[J]. Journal of the China Railway Society, 2017, 39(5): 22-32.

 

[4]马骢瑶. 大型飞机典型货舱地板下部结构坠撞吸能特性研究[D]. 天津: 中国民航大学, 2018.

 

Ma C Y. Crash Characteristic for the Cargo Subfloor Structure of Civil Aircraft[D]. Tianjin: Civil Aviation University of China, 2018.

 

[5]周礼, 王宇, 蒋忠城, 等. 泡沫填充铝合金多胞防爬器的吸能机理[J]. 塑性工程学报, 2023, 30(2): 231-241.

 

Zhou L, Wang Y, Jiang Z C, et al. Energy absorption mechanism of foam-filled aluminum alloy multi-cell anti-climber[J]. Journal of Plasticity Engineering,2023, 30(2): 231-241.

 

[6]Gao Q C, Xiao S N, Wang X R, et al. Tool failure analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles[J]. Applied Sciences, 2023, 13(3): 1619.

 

[7]贺世忠, 黄科. 轨道车辆膨胀管式吸能元件吸能特性分析[J]. 机械强度, 2019, 41(4): 1006-1011.

 

He S Z, Huang K. Research on the energy absorption characteristics of expansion tube energy absorbing elements for rail vehicles[J]. Journal of Mechanical Strength, 2019, 41(4): 1006-1011.

 

[8]邹广平, 闫安石, 唱忠良, 等.金属薄壁夹层结构变形形式及吸能特性研究[J]. 机械强度, 2023, 45(5): 1249-1253.

 

Zou G P, Yan A S, Chang Z L, et al. Study on deformation form and energy absorption characteristics of metal thin-walled sandwich structure[J]. Journal of Mechanical Strength, 2023, 45(5): 1249-1253.

 

[9]许平, 杨丽婷, 姚曙光, 等. 城轨列车方锥式防爬吸能结构碰撞力学参数设计及多目标优化[J]. 中南大学学报(自然科学版), 2022, 53(5): 1689-1699.

 

Xu P, Yang L T, Yao S G, et al. Collision mechanics parameter design and multi-objective optimization of square cone anti-climbing energy-absorbing structure for urban rail trains[J]. Journal of Central South University(Science and Technology), 2022, 53(5): 1689-1699.

 

[10]袁成标, 肖守讷, 杨宝柱. 低地板列车吸能防爬装置的碰撞特性研究[J]. 机车电传动, 2018(5): 83-88.

 

Yuan C B, Xiao S N, Yang B Z. Study on collision properties of anti-climbing energy absorption device for low-floor vehicles[J]. Electric Drive for Locomotives, 2018(5): 83-88.

 

[11]曾必强, 胡远志, 谢书港. 材料应变率强化效应对结构碰撞响应的影响[A]. 第八届国际汽车交通安全学术会议论文集[C]. 芜湖, 2010.

 

Zeng B Q, Hu Y Z, Xie S G. Effect of strain rate strengthening on structural collision response[A]. Proceedings of the 8th International Forum of Automotive Traffic Safety[C]. Wuhu, 2010.

 

[12]吴鸿超, 梁增友, 冯阳, 等. 薄壁金属管在中高速冲击下的缓冲特性研究[J]. 应用力学学报, 2016, 33(2): 325-331.

 

Wu H C, Liang Z Y, Feng Y, et al. Energy absorption characteristics of the expansion of thin-walled circular metal tubes by middle-speed and high-speed impact of a rigid cylinder[J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 325-331.

 

[13]陈书剑, 肖守讷, 朱涛, 等. 5083P-O和6008-T6铝合金的应变率效应对缓冲器缓冲特性的影响[J]. 中南大学学报(自然科学版), 2019, 50(11): 2665-2675.

 

Chen S J, Xiao S N, Zhu T, et al. Influence of 5083P-O and 6008-T6 aluminum alloys strain rate effect on cushioning characteristics of thin-walled circular metal tube buffer[J]. Journal of Central South University(Science and Technology), 2019, 50(11): 2665-2675.

 

[14]吴章斌, 桂良进, 范子杰. AZ31B镁合金挤压矩形管的轴向压溃试验与吸能特性分析[J].工程力学, 2015, 32(10): 183-190.

 

Wu Z B, Gui L J, Fan Z J. Axial compression tests and energy absorption characteristics of extruded magnesium alloy AZ31B rectangular tubes[J]. Engineering Mechanics, 2015, 32(10): 183-190.

 

[15]冯悦, 肖守讷, 朱涛, 等. 考虑材料失效准则的吸能装置失效行为与碰撞特性[J]. 中南大学学报(自然科学版), 2019, 50(2): 487-496.

 

Feng Y, Xiao S N, Zhu T, et al. Failure behavior and collision characteristics of energy-absorbing structures considering material failure criteria[J]. Journal of Central South University(Science and Technology), 2019, 50(2): 487-496.

 

[16]Bhutada S, Goel M D. Study of effect of provision of cut-outs on axial collapse behaviour of circular aluminium tubes[J]. International Journal of Impact Engineering, 2023, 178(1): 104599.

 

[17]梁海成, 于仁杰, 崔海涛. 挤压态Mg-Gd-Y镁合金的热变形行为[J]. 机械工程学报, 2023, 59(22): 332-342.

 

Liang H C, Yu R J, Cui H T. Thermal deformation behavior of extruded Mg-Gd-Y magnesium alloy[J]. Journal of Mechanical Engineering, 2023, 59(22): 332-342.

 

[18]张斌, 郭玲梅, 汪洋, 等. TA7钛合金拉伸和压缩加载时的孪生变形行为[J]. 中国有色金属学报, 2021, 31(9): 2427-2435.

 

Zhang B, Guo L M, Wang Y, et al. Deformation twinning behavior of TA7 titanium alloy under tension and compression[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(9): 2427-2435.

 

[19]Holmen J K, Frodal B H, Hopperstad O S, et al. Strength differential effect in age hardened aluminum alloys[J]. International Journal of Plasticity, 2017, 99: 144-161.

 

[20]Drucker D C. Relation of experiments to mathematical theories of plasticity[J]. Journal of Applied Mechanics Transactions, 1949, 16(4): 349-357.

 

[21]Yoon J W, Lou Y S, Yoon J H, et al. Asymmetric yield function based on the stress invariants for pressure sensitive metals[J]. International Journal of Plasticity, 2014, 56: 184-202.

 

[22]Lou Y S, Yoon J W. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion[J]. International Journal of Plasticity, 2017, 99: 144-161.

 

[23]Hill R. Theoretical plasticity of textured aggregates[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1979, 85(1):179-191.

 

[24]Lou Y S, Yoon J W. Lode-dependent anisotropic-asymmetric yield function for isotropic and anisotropic hardening of pressure-insensitive materials. Part I: Quadratic function under non-associated flow rule[J]. International Journal of Plasticity, 2023, 166: 103647.

 

[25]Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7): 1171-1194.

 

[26]Bridgman P W. Studies in Large Plastic Flow and Fracture:With Special Emphasis on the Effect of Hydrostatic Pressure[M]. New York: McGraw-Hill, 1952.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9