[1]Liu G H, Ma Q W. Strip steel surface defect detecting method combined with a multi-layer attention mechanism network[J]. Measurement Science and Technology, 2023, 34(5):055403.
[2]Chen W, Zou B, Huang C Z, et al. The defect detection of 3D-printed ceramic curved surface parts with low contrast based on deep learning[J]. Ceramics International, 2023, 49(3):2881-2893.
[3]Li W H, Zhang H O, Wang G L, et al. Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80:102470.
[4]Lu L, Hou J, Yuan S Q, et al. Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites [J]. Robotics and Computer-Integrated Manufacturing, 2023, 79:102431.
[5]Wang L. Application of deep learning to detect defects on the surface of steel balls in an IoT environment [J]. The Journal of Supercomputing, 2022, 78(14):16425-16452.
[6]王泽.无缝钢管直径测量与表面缺陷检测系统研究[D].桂林:广西师范大学,2019.
Wang Z. Research on Seamless Steel Tubes Diameter Measurement and Surface Defect Detection System[D]. Guilin: Guangxi Normal University, 2019.
[7]石磊,汪建余,孙胜伟,等.基于视觉检测技术的冲压收料线监测系统开发[J].锻压技术,2023,48(9):184-189.
Shi L, Wang J Y, Sun S W, et al, Development on monitoring system for stamping receiving line based on visual inspection technology [J]. Forging & Stamping Technology, 2023, 48 (9): 184-189.
[8]阎馨,杨月川,屠乃威.基于改进SSD的钢材表面缺陷检测[J].现代制造工程,2023(5):112-120.
Yan X, Yang Y C, Tu N W. Steel surface defect detection based on improved SSD [J]. Modern Manufacturing Engineering, 2023(5): 112-120.
[9]Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [A]. European Conference on Computer Vision[C]. Cham:Springer, 2016.
[10]张亚腾,黄俊.基于YOLOv7的钢表面缺陷检测[J].激光杂志,2024,45(3):87-93.
Zhang Y T, Huang J. Steel surface defect detection based on YOLOv7 [J]. Laser Journal, 2024, 45(3): 87-93.
[11]Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[A]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) [C]. Vancouver, 2023.
[12]寇旭鹏,刘帅君,麻之润.基于Faster-RCNN的钢带缺陷检测方法[J].中国冶金,2021,31(4):77-83.
Kou X P, Liu S J, Ma Z R. Defect detection method of steel strip based on Faster-RCNN [J]. China Metallurgy, 2021,31(4): 77-83.
[13]Ren S Q, He K M, Girshick R. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[14]代小红,陈华江,朱超平.一种基于改进Faster RCNN的金属材料工件表面缺陷检测与实现研究[J].表面技术,2020,49(10):362-371.
Dai X H, Chen H J, Zhu C P. Surface defect detection and realization of metal workpiece based on improved Faster RCNN [J]. Surface Technology, 2020, 49(10): 362-371.
[15]Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[A]. 2014 IEEE Conference on Computer Vision and Pattern Recognition[C]. Columbus, 2014.
[16]Liu Z, Mao H, Wu C Y, et al. A ConvNet for the 2020s[DB/OL]. https://arxiv.org/abs/2201.03545.
[17]Bi J, Hare J S, Merrett G V. GhostShiftAddNet: More features from energy-efficient operations[DB/OL]. https://arxiv.org/abs/2109.09495.
[18]Ge Z, Liu S T, Wang F, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. https://arxiv.org/abs/2107.08430.
[19]Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications[DB/OL]. https://arxiv.org/abs/2209.02976.
[20]Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[A]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition[C]. Honolulu: IEEE, 2017.
[21]孙泽强,陈炳才,崔晓博,等.融合频域注意力机制和解耦头的YOLOv5带钢表面缺陷检测[J].计算机应用,2023, 43(1):242-249.
Sun Z Q, Chen B C, Cui X B, et al. Strip steel surface defect detection by YOLOv5 algorithm fusing frequency domain attention mechanism and decoupled head [J]. Journal of Computer Applications, 2023, 43(1): 242-249.
[22]Howard A G, Zhu M L, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[DB/OL]. https://arxiv.org/abs/1704.04861.
[23]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[A]. Proceedings of the 2021 International Conference on Learning Representations[C]. Virtual Event: OpenReview.net, 2021.
[24]Wortsman M, Lee J, Gilmer J, et al. Replacing softmax with ReLU in vision transformers [DB/OL]. http://arxiv.org/abs/2309.08586.
[25]Quan Y, Zhang D, Zhang L Y, et al. Centralized feature pyramid for object detection[J]. IEEE Trans. on Image Process., 2023, 32: 4341-4354.
[26]Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[A]. Proceedings of the 2018 European Conference on Computer Vision(ECCV)[C]. Cham: Springer, 2018.
[27]Hu J, Shen L, Sun G. Squeeze-and-excitation networks [A]. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition[C]. Salt Lake City: IEEE, 2018.
[28]Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[A]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Los Alamitos: IEEE Computer Society Press, 2021.
[29]GitHub-Inc. YOLOv5 [EB/OL]. https://github.com/ultralytics/yolov5, 2021-06-15.
[30]程婧怡,段先华,朱伟.改进YOLOv3的金属表面缺陷检测研究[J].计算机工程与应用,2021,57(19):252-258.
Cheng J Y, Duan X H, Zhu W. Research on metal surface defect detection by improved YOLOv3 [J]. Computer Engineering and Applications, 2021, 57(19): 252-258.
[31]徐洪俊,唐自强,张锦东,等.钢材表面缺陷检测的YOLOv5s算法优化研究[J].计算机工程与应用,2024,60(7):306-314.
Xu H J, Tang Z Q, Zhang J D, et al. Research on optimization of YOLOv5s detection algorithm for steel surface defect [J]. Computer Engineering and Applications, 2024, 60(7): 306-314.
[32]李少雄,史再峰,孔凡宁,等.一种面向钢材表面缺陷检测的改进型YOLOv5算法[J].激光与光电子学进展,2023,60(24):184-192.
Li S X, Shi Z F, Kong F N, et al. An improved YOLOv5 algorithm for steel surface defect detection [J]. Laser & Optoelectronics Progress, 2023, 60(24): 184-192.
[33]高春艳,秦燊,李满宏,等.改进YOLOv7算法的钢材表面缺陷检测研究[J].计算机工程与应用,2024,60(7):282-291.
Gao C Y, Qin S, Li M H, et al.Research on steel surface defect detection based on improved YOLOv7 algorithm[J]. Computer Engineering and Applications, 2024, 60(7): 282-291.
|