网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新能源汽车电工钢二十辊轧机轧制工艺技术研发
英文标题:Research and development on rolling process technology of twenty-roller rolling mill for electrical steel in new energy vehicle
作者:刘松1 2 徐利璞1 2 刘云飞1 2 魏志毅1 2 黄煜1 2 计江1 2 刘江林3 柳宇4 
单位:1.中国重型机械研究院股份公司 2.金属成形技术与重型装备全国重点实验室 3. 太原理工大学 机械工程学院 4. 西安理工大学 计算机科学与工程学院 
关键词:新能源汽车 电工钢 二十辊轧机 在线监测 板形控制 
分类号:TG335.5
出版年,卷(期):页码:2025,50(2):115-124
摘要:

针对电工钢的材料属性和二十辊轧机的设备特性,研发了二十辊轧机在线监测工艺技术及其板厚与板形控制技术。断带预警系统、巡边测厚系统和精确准停控制系统等在线监测工艺技术为电工钢产品整体品质的提升提供了硬件基础,极大降低了边裂和断带风险,并显著提升了成材率。综合运用预控AGC、监控AGC和秒流量AGC的板厚控制技术与控制策略和核心算法更先进的板形控制技术,不仅为电工钢规模化生产提供了软件保障,而且对其板形和板厚等核心技术指标完成了有效控制。通过软硬件的协同作用,本轧制工艺技术使带材精度和同板差得到有效控制,厚度精度达±1 μm,板形精度达5 I。电工钢的成材率和生产效率得以提升,而且其磁性增强、铁损降低,满足了新能源汽车的需求。

For the material properties of electrical steel and the equipment characteristics of a twenty-roller rolling mill, an online monitoring process technology for twenty-roller rolling mill and its plate thickness and shape control technology was researched and developed. Online monitoring process technologies including breakage warning system, edge inspection and thickness measurement system, and precise stopping system provided a hardware foundation for improving the overall quality of electrical steel products, which greatly reduced the risk of edge cracking and breakage, and significantly improved the yield rate. Comprehensive application of plate thickness control technologies including pre-control AGC, monitoring AGC and second flow AGC, as well as plate shape control technologies with more advanced control strategies and core algorithms, not only provided software support for the large-scale production of electrical steel, but also effectively controlled the core technical indicators such as plate shape and thickness. Through synergistic effect of software and hardware, this rolling process technology effectively controled accuracy of strip and the same plate difference, with a thickness accuracy of ±1 μm and a plate shape accuracy of 5 I. Thus, the yield rate and production efficiency of electrical steel were improved, and its magnetic strength was enhanced and iron loss was reduced, meeting the needs of new energy vehicles.

基金项目:
陕西省技术创新引导专项(2024QY-SZX-08);国家自然科学基金面上项目(52075359)
作者简介:
作者简介:刘松(1984-),男,硕士,高级工程师,E-mail:liuslius0351@163.com;通信作者:柳宇(1989-),女,硕士,E-mail:liuyu@xaut.edu.cn
参考文献:

[1]张寿荣,陈卓,胡守天.从能源发展谈我国电工钢产业战略思路[J].电工钢,2019,1(1):1-4.


 

Zhang S R, Chen Z, Hu S T. Discussion on the strategic development of electrical steel industry from the perspective of energy development in China [J]. Electrical Steel, 2019, 1(1):1-4.

 

 

[2]胡艳平.新能源汽车用电工钢供需现状及未来[J].冶金管理,2024(3):17-21. 

 

Hu Y P. Supply and demand status and future of electrical steel for new energy vehicles[J]. China Steel Focus, 2024(3):17-21. 

 

[3]曹建国,宋纯宁,孙磊,等.新一代高技术宽带钢轧机电工钢高精度板形控制研究进展[J].塑性工程学报,2024,31(4):131-142. 

 

Cao J G, Song C N, Sun L, et al. Research progress on high precision profile contour and flatness control of electrical steel for new generation of high-tech wide strip rolling mills[J]. Journal of Plasticity Engineering, 2024,31(4):131-142. 

 

[4]张凤泉,张维林,孙文权.我国冷轧硅钢近10年发展现状及方向研究[J].电工钢,2024,6(4):1-8. 

 

Zhang F Q, Zhang W L, Sun W Q. Current status and development direction of electrical steel in China[J]. Electrical Steel, 2024,6(4):1-8. 

 

[5]曹建国,宋纯宁,孙磊,等.新一代高技术冷连轧机电工钢同板差板形控制研究进展与创新发展趋势[A].中国金属学会.第十四届中国钢铁年会论文集[C].重庆,2023.

 

Cao J G, Song C N, Sun L,et al. Research progress and innovative development trends of transverse thickness difference for shape control of electric steel in the new-generation high-tech tandem cold rolling mills[A].The Chinese Society for Metals. Proceedings of the 14th China Iron and Steel Annual Conference[C]. Chongqing, 2023.

 

[6]刘宏民,于华鑫,王东城,等.冷轧带钢板形测控前沿技术的创新方略[J].钢铁,2023,58(4):77-86.

 

Liu H M, Yu H X, Wang D C, et al. Innovative strategy on frontier flatness measurement and control technology of cold strip steel rolling[J]. Iron and Steel, 2023,58(4):77-86.

 

[7]储双杰,汤文杰,梁高飞,等.吉帕钢冷轧板形及厚度精度控制技术研究[J].轧钢,2022,39(2):51-56. 

 

Chu S J, Tang W J, Liang G F, et al. Research on flateness and thickness accuracy control of cold rolled × GPa steel sheet[J]. Steel Rolling,2022,39(2):51-56. 

 

[8]曹建国,江军,邱澜,等.新一代高技术宽带钢冷轧机全机组一体化板形控制[J].中南大学学报(自然科学版),2019,50(7):1584-1591. 

 

Cao J G, Jiang J, Qiu L, et al. High precision integrated profile and flatness control for new-generation high-tech wide strip cold rolling mills[J]. Journal of Central South University(Science and Technology), 2019,50(7):1584-1591. 

 

[9]李旭,金树仁,王鹏飞,等.冷轧板形控制技术的研究现状及展望[J].中国冶金,2024,34(7):21-30. 

 

Li X, Jin S R, Wang P F, et al. Research status and perspectives for cold rolling flatness control technology[J].China Metallurgy, 2024,34(7):21-30.

 

[10]何小丽,王崇.冷轧机组闭环板形控制策略研究[J].冶金自动化,2018,42(2):44-48. 

 

He X L, Wang C. Study on closed-loop shape control strategy of cold colling[J]. Metallurgical Industry Automation, 2018,42(2):44-48.

 

[11]黄彦峰,孟文华,孙立峰.二十辊碳钢薄带轧机轧制工艺[J].一重技术,2016(1):5-8. 

 

Huang Y F, Meng W H, Sun L F. Rolling process of 20-H thin carbon steel strip mills[J]. CFHI Technology, 2016(1):5-8.

 

[12]武佳蕾.冷轧电工钢森吉米尔轧机研究进展[J].冶金设备,2014(S1):72-73,49. 

 

Wu J L. Development in research of Sendzmir mill for cold rolling electrical steel[J]. Metallurgical Equipment, 2014(S1):72-73,49.

 

[13]李广林,陈凌峰,张广治,等.冷轧硅钢板形与横向厚度控制的分析[J].中国冶金,2015,25(4):24-27. 

 

Li G L, Chen L F, Zhang G Z, et al. Analysis of the shape and transverse thickness control of cold-rolled silicon steel[J].China Metallurgy, 2015,25(4):24-27. 

 

[14]Lee S H,Lee K H,Ko D C,et al. Development of three-dimensional strip profile model for thin-foil cold rolling[J]. Advances in Mechanical Engineering,2014,6:1-13. 

 

[15]Yang L P,Jiang Z Y,Zhang Y S,et al. High precision recognition and adjustment of complicated shape details in fine cold rolling process of ultra-thin wide strip[J]. Journal of Manufacturing Processes,2018,35:508-516. 

 

[16]陈卓.2019年我国高性能电工钢生产能力与需求研究[J].电工钢,2020,2(1):1-8.

 

Chen Z. Research on production capacity and demand of high performance electrical steel in China[J]. Electrical Steel, 2020,2(1):1-8.

 

[17]Fu M W,Wang J L,Korsunsky A M. A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components[J]. International Journal of Machine Tools and Manufacture,2016,109:94-125. 

 

[18]蒋宗耀,吕韬,宁晓宇. 铬系特种合金全流程生产工艺[J]. 铁合金,2022,53(1):11-14.

 

Jiang Z Y,Lyu T,Ning X Y. Whole process production technology of chromium series special alloy [J]. Ferro-alloys,2022,53(1):11-14.

 

[19]舒泽腾,滑小杰,白璐,等.硅钢冷轧断带原因分析和工艺改进[J].电工钢,2024,6(2):17-22.

 

Shu Z T, Hua X J, Bai L,et al. Cause analysis and process improvement of cold-rolled broken strip of silicon steel[J]. Electrical Steel, 2024,6(2):17-22. 

 

[20]刘松,李俊辉,刘云飞,等.特种合金极薄带轧制工艺与技术装备的研制[J].机械工程学报,2024,60(4):357-368.

 

Liu S, Li J H, Liu Y F,et al. Research on rolling process and technical equipment of special alloy strip with ultra-thin thickness[J]. Journal of Mechanical Engineering, 2024, 60(4): 357-368.

 

[21]马晓宝.硅钢板带轧制横向厚差综合控制技术研究[D].秦皇岛:燕山大学,2018.

 

Ma X B.Research on Comprehensive Control Technology for Cross-section Thickness Difference of Silicon Steel Strip Rolling[D]. Qinhuangdao:Yanshan University, 2018.

 

[22]马鹏宇.冷轧硅钢边部减薄的有限元仿真[D].鞍山:辽宁科技大学,2016.

 

Ma P Y. Edge Drop of Finite Element Simulation in Cold Rolled Silicon-steel[D]. Anshan:University of Science and Technology Liaoning, 2016.

 

[23]刘松,计江,苏旭涛,等. 双卷筒回转式卷取机自主研发与应用实践[J]. 重型机械,2018(6):8-11.

 

Liu S,Ji J,Su X T,et al. Self-development and application practice of rotary coiler with double reels [J]. Heavy Machinery,2018(6):8-11.

 

[24]刘相华,汤德林. 一种生产金属薄带及极薄带的多功能轧机 [P]. 中国:CN102989765A,2013-03-27. 

 

Liu X H,Tang D L. A multifunction mill for manufacturing metal thin strip and ultra thin strip [P].China,CN102989765A,2013-03-27.

 

[25]任忠凯,郭雄伟,范婉婉,等. 精密极薄带轧制理论研究进展及展望[J]. 机械工程学报,2020,56(12):73-84.

 

Ren Z K,Guo X W,Fan W W,et al. Research progress and prospects of precision ultra-thin strip rolling theory[J]. Journal of Mechanical Engineering,2020,56(12):73-84.

 

[26]潘纯久. 二十辊轧机及高精度冷轧钢带生产[M]. 北京:冶金工业出版社,2003. 

 

Pan C J. Twenty-high Rolling Mill and High-precision Cold-rolled Steel Strip Production[M]. Beijing:Metallurgical Industry Press,2003. 

 

[27]刘松,窦锋,王悦晗,等. 楚江新材600 mm铜带强力粗轧机组新技术[J]. 重型机械,2020(2):17-20.

 

Liu S,Dou F,Wang Y H,et al. New technology of 600 mm copper strip strong roughing mill in Truchum [J]. Heavy Machinery,2020(2):17-20.

 

[28]于九明,贾广凤,朱泉. 异步轧制极薄带材的变形特点及“步弹性塞”性原理[J]. 东北大学学报(自然科学版),1982,3(3):17-27. 

 

Yu J M,Jia G F,Zhu Q. The deformation characteristics in cross shear cold rolling of ultra-thin strip and the theory of “elastic stopper” [J]. Journal of Northeastern University(Natural Science),1982,3(3):17-27. 

 

[29]朱航飞. 压延铜箔生产现状介绍与分析[J]. 有色金属加工,2014(4):4-6. 

 

Zhu H F. Rolled copper foil:Presentation and analysis of current production[J]. Nonferrous Metals Processing,2014(4):4-6. 

 

[30]刘松,计江,徐利璞,等. 带材拉伸弯曲矫直机系统能量的研究[J]. 重型机械,2021(5):63-68.

 

Liu S,Ji J,Xu L P,et al. System energy research on strip tension leveler[J]. Heavy Machinery,2021(5):63-68.

 

[31]刘晓,付伦,芦跃峰,等. 薄带材轧制的最小可轧厚度理论及数值模拟[J]. 钢铁,2021,56(11):87-95.

 

Liu X,Fu L,Lu Y F,et al. Theory and numerical simulation of minimum rolling thickness for thin strip rolling[J]. Iron and Steel,2021,56(11):87-95.

 

[32]赵启林,刘相华. 极薄带最小可轧厚度研究新进展[J].轧钢,2018,35(2):1-5.

 

Zhao Q L,Liu X H. Prospect for possible minimum foil thickness by rolling [J]. Steel Rolling,2018,35(2):1-5.

 

[33]刘松,窦锋,贺琪,等. 泰钢950 mm HC轧机改造[J].重型机械,2018(2):85-88. 

 

Liu S,Dou F,He Q,et al. Reformation of 950 mm HC rolling mill for Taishan steel[J]. Heavy Machinery,2018(2):85-88.

 

[34]王崇涛,方康玲.森吉米尔轧机的板形控制[J]. 轧钢,2005(4):14-16,23.

 

Wang C T,Fang K L. Shape control on Sendzimir mill [J]. Steel Rolling,2005(4):14-16,23.

 

[35]张岩,邵富群,王军生,等. 灰色预测模型在冷轧动态张力控制中的应用[J]. 东北大学学报(自然科学版),2011,32(5):614-617.

 

Zhang Y,Shao F Q,Wang J S,et al. Using a gray predictive model for controlling dynamic tension during cold rolling [J]. Journal of Northeastern University(Natural Science),2011,32(5):614-617.

 

[36]陈梦,陈戈. 太钢不锈钢冷轧厂开卷机全数字间接恒张力控制系统的设计[J]. 冶金自动化,2004(3):44-46.

 

Chen M,Chen G. Design of all digital indirect constant tension control system for coiler in stainless steel cold rolling mill of Taiyuan iron and steel Co Ltd[J]. Metallurgical Industry Automation,2004(3):44-46.

 

[37]赵启林,刘相华. 极薄带最小可轧厚度研究新进展[J].轧钢,2018,35(2):1-5.

 

Zhao Q L,Liu X H. Prospect for possible minimum foil thickness by rolling [J]. Steel Rolling,2018,35(2):1-5.

 

[38]周曦,王崇涛,徐键,等. 森吉米尔轧机秒流量AGC的改进与应用[J]. 武钢技术,2014,52(5):48-52.

 

Zhou X,Wang C T,Xu J,et al. The modification and application of Sendzimir mill mass flow AGC system [J]. Wisco Technology,2014,52(5):48-52.

 

[39]王立萍,胡素影. 冶金设备及自动化[M]. 北京:冶金工业出版社,2011.

 

Wang L P, Hu S Y. Metallurgical Equipment and Automation[M]. Beijing:Metallurgical Industry Press,2011.

 

[40]戴杰涛,张清东,黄河. 薄带钢轧制过程中工作辊辊端压靠研究[J]. 钢铁,2010,45(7):57-61. 

 

Dai J T,Zhang Q D,Huang H. Study on roll end forced-contract in rolling process of thin strip[J]. Iron and Steel,2010,45(7):57-61. 

 

[41]Chen S D,Liu X H,Liu L Z. Effects of grain size and heterogeneity on the mechanical behavior of foil rolling[J]. International Journal of Mechanical Sciences,2015,100:226-236. 

 

[42]Chen S D,Liu X H,Liu L Z. Grain statistics effect on deformation behavior in asymmetric rolling of pure copper foil by crystal plasticity finite element model[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3370-3380.

 

[43]Xiao H,Ren Z K,Liu X. New mechanism describing the limiting producible thickness in ultra-thin strip rolling[J]. International Journal of Mechanical Sciences,2017,133:788-793. 

 

[44]韩建超,侯洁,郭雄伟,等. 极薄带轧制板形解析模型与实验研究[J]. 塑性工程学报,2019,26(4):85-92.

 

Han J C,Hou J,Guo X W,et al. Analytical model and experimental study on ultra-thin strip rolling shape[J]. Journal of Plasticity Engineering,2019,26(4):85-92. 

 

[45]刘成荣. 减少低碳钢极薄带材冷轧断带事故的方法[J].现代制造技术与装备,2022,58(5):172-174.

 

Liu C R. Method to reduce the accident of cold rolling strip breaking of low carbon steel [J]. Modern Manufacturing Technology and Equipment,2022,58(5):172-174.

 

[46]陈保胜,舒航. 带材收放卷张力控制系统研究[J].现代机械,2022,232(6):64-68.

 

Chen B S,Shu H. Research on tension control system of strip reeling mechanism[J]. Modern Machinery,2022,232(6):64-68. 

 

[47]张清东,张勃洋,李瑞,等. 钢板微观表面质量控制理论与技术研究进展[J]. 机械工程学报,2016,52(10):32-45. 

 

Zhang Q D,Zhang B Y,Li R,et al. Advances in theory and technology for microscopic surface quality control of steel strip[J]. Journal of Mechanical Engineering,2016,52(10):32-45. 

 

[48]刘松,黄庆学,周存龙,等. 带钢拉伸弯曲矫直机压弯模型的研究[J]. 太原科技大学学报,2012,33(6):448-451.

 

Liu S,Huang Q X,Zhou C L,et al. Study on bending model of strip tension leveler[J]. Journal of Taiyuan University of Science Technology. 2012,33(6):448-451. 

 

[49]周健,郭斌,单德彬. 铜箔抗拉强度及延伸率的尺寸效应研究[J]. 材料科学与工艺,2010,18(4):445-449. 

 

Zhou J,Guo B,Shan D B. Research of size effects on tensile strength and elongation of copper foil[J]. Materials Science and Technology,2010,18(4):445-449.

 

[50]董湘怀,王倩,章海明,等. 微成形中尺寸效应研究的进展[J]. 中国科学:技术科学,2013,43(2):115-130. 

 

Dong X H,Wang Q,Zhang H M,et al. Progress in size effect of micro-forming[J]. Scientia Sinica(Technologica),2013,43(2):115-130.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9