[1]Wang Y C, Gao L, Gao Y P, et al. A new graph-based semi-supervised method for surface defect classification[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102083.
[2]Kim H M, Rho Y W, Yoo H R, et al. A study on the measurement of axial cracks in the magnetic flux leakage NDT system[A]. Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012)[C]. Seoul, Korea:IEEE, 2012.
[3]Jeon Y J, Choi D C, Lee S J, et al. Defect detection for corner cracks in steel billets using a wavelet reconstruction method[J]. Journal of the Optical Society of America A, 2014, 31(2): 227-237.
[4]Zhang B Y, Yang H, Yin Z P. A region-based normalized cross correlation algorithm for the vision-based positioning of elongated IC chips[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(3): 345-352.
[5]豆远航,崔学习,钟馨平,等.基于深度学习的非接触应变测量网格图像修复技术[J].锻压技术,2024,49(8):195-204.
Dou Y H, Cui X X, Zhong X P, et al. Grid image restoration technology for non-contact strain measurement based on deep learning [J]. Forging & Stamping Technology,2024,49(8):195-204.
[6]Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[7]Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, real-time object detection[A]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].Las Vegas Nevada,USA:IEEE,2016.
[8]He Y, Song K C, Meng Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493-1504.
[9]Du W Z, Shen H Y, Fu J Z, et al. Approaches for improvement of the X-ray image defect detection of automobile casting aluminum parts based on deep learning[J]. NDT & E International,2019,107:102144.
[10]Chen W, Gao Y P, Gao L, et al. A new ensemble approach based on deep convolutional neural networks for steel surface defect classification[J]. Procedia CIRP, 2018, 72:1069-1072.
[11]刘艳菊,王秋霁,张惠玉,等.基于改进SSD的工件表面缺陷检测[J].热加工工艺,2024,53(2):134-139.
Liu Y J, Wang Q J, Zhang H Y, et al. Defect detection of workpiece surface based on improved SSD [J]. Hot Working Technology, 2024, 53 (2): 134-139.
[12]Tan M X, Pang R M, Le Q V. EfficientDet:Scalable and efficient object detection[A]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Seattle,WA,USA:IEEE,2020.
[13]Wang P Q, Chen P F, Yuan Y, et al. Understanding convolution for semantic segmentation[A]. Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)[C]. Lake Tahoe,NV,USA:IEEE,2018.
[14]Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[A]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Nashville, TN, USA:IEEE,2021.
[15]Han K, Wang Y H, Tian Q, et al. GhostNet: More features from cheap operations[A]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Seattle, WA, USA:IEEE,2020.
[16]Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[A].Computer Vision-ECCV 2014[C].
Berlin,Germany:Springer International Publishing, 2014.
[17]Sun P, Zhang R, Jiang Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[A]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Nashville, TN, USA:IEEE,2021.
|