网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热轧卷取夹送辊辊面冲击应力分析及冲击痕控制
英文标题:Impact stress analysis and control for impact marks on roll surface of pinch roll in hot rolling coiling
作者:姚无病1 王燕2 
单位:1.上海梅山钢铁股份有限公司 规划科技部 2.安徽工业大学 机械工程学院 
关键词:热轧卷取 夹送辊 翘头高度 冲击应力 冲击痕 
分类号:TF305
出版年,卷(期):页码:2025,50(2):132-138
摘要:

为延长夹送辊的使用寿命,减少辊面冲击痕的出现概率,以Stellite delstain-442焊丝制备的堆焊层为样本,进行了高温拉伸和高温冲击试验,分析了堆焊层的微观组织与力学性能,并观察了断口形貌。建立了夹送辊冲击应力仿真分析模型,基于高温拉伸数据建立了辊面材料的本构模型,探究了翘头高度、带钢速度和超前率等关键因素对辊面最大冲击应力的影响。仿真结果表明,翘头高度是影响最大冲击应力的关键因素,随着翘头高度的增加,辊面最大冲击应力急剧上升,最高可达1395.6 MPa。所以,控制带钢头部翘头高度是降低带钢头部对夹送辊辊面冲击应力的有效措施。

 

In order to prolong the service life of pinch roll and reduce the appearance probability of impact marks on the roll surface, the surfacing layer prepared by Stellite delstain-442 wire was taken as the sample to carry out the high temperature tensile and high temperature impact tests. The microstructure and mechanical properties of surfacing layer were analyzed, and the fracture morphology was observed. The simulation and analysis model of impact stress for pinch roll was established,and the constitutive model of roll surface material was established based on the high-temperature tensile data. The influence of key factors such as warping height, strip steel speed and lead speed ratio on the maximum impact stress of roll surface was explored. The simulation results show that the warping height is the key factor affecting the maximum impact stress, with the increasing of the warping height, the maximum impact stress on the roll surface increases sharply, reaching a maximum of 1395.6 MPa. Therefore, controlling the warping height of strip steel head is an effective measure to reduce the impact stress of strip steel head on the roll surface of pinch roll.

基金项目:
上海梅山钢铁有限公司资助项目(RH2200002225)
作者简介:
作者简介:姚无病(1972-),男,硕士,工程师,E-mail:snowdrio@126.com;通信作者:王燕(1997-),女,硕士研究生,E-mail:wangderz@126.com
参考文献:

[1]Wang X D, Li F, Li B H, et al. Design and application of an optimum backup roll contour configured with CVC work roll in hot strip mill[J]. ISIJ International, 2012, 52(9):1637-1643.


 

[2]Servin-Castaeda R, Garcia-Lara A M, Mercado-Solís R D, et al. Development of mathematical model for control wear in backup roll for hot strip mill[J]. Journal of Iron and Steel Research,International, 2014, 21(1):46-51.

 

[3]李瑞, 张亮亮, 魏建波, 等. 卷取温度和随后的冷却方式对65Mn钢板表面质量的影响[J]. 上海金属, 2023, 45(5):45-49.

 

Li R, Zhang L L, Wei J B, et al. Effect of coiling temperatures and subsequent cooling way on surface quality of 65Mn steel sheet[J]. Shanghai Metals, 2023, 45(5):45-49.

 

[4]锅渺, 李莎, 赵利平, 等. 波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响[J]. 材料导报, 2020, 34(22):22087-22092.

 

Guo M, Li S, Zhao L P, et al. Effect of rolling temperature of corrugated roll on the interface structure and mechanical properties of Mg/Al composite plate[J]. Materials Reports, 2020, 34(22):22087-22092.

 

[5]Yuan Q Q, Wang Z G, Zhang Y H, et al. Effect of warm rolling temperature on the microstructure and texture of microcarbon dual-phase (DP) steel[J]. Metals, 2020, 10(5):566.

 

[6]Wang Y D, Xia J W, Wang Z, et al. Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills [J]. Applied Mathematics and Computation, 2020, 369:124841.

 

[7]Liu X, Xiao H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling[J]. Journal of Materials Processing Technology, 2020, 278:116537.

 

[8]张鹏杰, 刘志恒,关淑巧. DP钢退火快冷段常见缺陷原因分析及解决措施[J]. 轧钢, 2020, 37(3):90-92.

 

Zhang P J, Liu Z H, Guan S Q. Causes analysis of common defects in rapid cooling section of annealing furnace for DP steel and its countermeasures[J]. Steel Rolling, 2020, 37(3):90-92.

 

[9]宋光义, 杨荃, 王晓晨, 等. 热轧带钢平整机工作辊磨损规律[J]. 钢铁, 2017, 52(9):54-59.

 

Song G Y, Yang Q, Wang X C, et al. Work roll wear law for hot strip temper mill[J]. Iron and Steel, 2017, 52(9):54-59.

 

[10]魏立新, 高江曼, 麻诚, 等. 冷轧平整机工作辊表面粗糙度衰减模型[J]. 钢铁, 2015, 50(6):51-56.

 

Wei L X, Gao J M, Ma C, et al. Attenuation model for working roll′s surface roughness in cold rolling temper mill [J]. Iron and Steel, 2015, 50(6):51-56.

 

[11]Zhao J W, Wang X C, Yang Q, et al. Mechanism of lateral metal flow on residual stress distribution during hot strip rolling[J]. Journal of Materials Processing Technology, 2021, 288:116838.

 

[12]官旭东. 重轨表面轧辊粘钢压痕缺陷研究[J]. 轧钢, 2023, 40(4):129-133.

 

Guan X D. Research on indentation defects on the surface of heavy rail caused by rolls sticking steel[J]. Steel Rolling, 2023, 40(4):129-133.

 

[13]Das S, Palit P, Mukhopadhya S, et al. Pinch roller failure analysis and resulting enhancement of rebar mechanical properties[J]. Journal of Failure Analysis and Prevention, 2013, 13(4):396-402.

 

[14]Lee Y J, Yi K W. Alleviation of high-temperature oxidation and cracking of water-cooled roll for hot-rolling steel[J]. Journal of Mechanical Science and Technology, 2019, 33(12):5787-5796.

 

[15]王廷宣, 章健, 刘敬, 等. 激光熔覆层裂纹控制的研究进展[J]. 机械工程材料, 2023, 47(8):1-7,58.

 

Wang T X, Zhang J, Liu J,et al. Research progress on crack control of laser cladding layer[J]. Materials for Mechanical Engineering, 2023, 47(8):1-7,58.

 

[16]Thawari N, Gullipalli C, Katiyar J K, et al. Influence of buffer layer on surface and tribomechanical properties of laser cladded Stellite 6[J]. Materials Science and Engineering: B, 2021, 263:114799.

 

[17]GB/T 228.2—2015, 金属材料拉伸试验第2部分: 高温试验方法[S].

 

GB/T 228.2—2015, Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature[S].

 

[18]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].

 

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].

 

[19]Li Y L, Wen J, Lin H H, et al. Mathematical modelling of online warping height of cold-rolled thin strip steel[J]. International Journal of Steel Structures, 2022, 22(4):913-919.

 

[20]Philipp M, Schwenzfeier W, Fischer F D, et al. Front end bending in plate rolling influenced by circumferential speed mismatch and geometry[J]. Journal of Materials Processing Technology, 2007, 184(1-3):224-232.

 

[21]Zhao J W, Wang X C, Yang Q, et al. Mechanism of lateral metal flow on residual stress distribution during hot strip rolling[J]. Journal of Materials Processing Technology, 2021, 288:116838.

 

[22]白鹏飞, 任凤章, 殷立涛, 等. 中锰钢热轧与冷轧退火工艺下组织与性能差异综述[J]. 材料热处理学报, 2024, 45(1):22-33.

 

Bai P F, Ren F Z, Yin L T, et al. Summary of differences in microstructure and properties between hot-rolled and cold-rolled annealing processes of medium manganese steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(1):22-33.

 

[23]Hu B J, Zheng Q Y, Jia C N, et al. Improvement of mechanical properties of a medium-Mn TRIP steel by precursor microstructure control[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7):1068-1078.

 

[24]Gao F, Zhou J, Zhou J F, et al. Microstructure and properties of surfacing layers of dies manufactured by bimetal-gradient-layer surfacing technology before and after service[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5-8):1289-1297.

 

[25]Kamimiyada K, Ishikawa S, Miyahara H, et al. Effect of MC type carbides on wear resistance of high wear resistant cast iron rolls developed for work rolls of hot strip mills[J]. ISIJ International, 2021, 61(10):2597-2604.

 

[26]李俊, 李绍宏, 熊茹, 等. 超临界水冷堆用候选奥氏体耐热不锈钢热时效组织研究[J]. 核动力工程, 2023, 44(6):148-154.

 

 

Li J, Li S H, Xiong R, et al. Study on the thermal aged microstructure of candidate austenitic heat-resistant stainless steel for supercritical water-cooled reactor[J]. Nuclear Power Engineering, 2023, 44(6):148-154.

 

[27]Tu S W, Ren X B, He J Y, et al. Stress-strain curves of metallic materials and post-necking strain hardening characterization: A review[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(1):3-19.

 

[28]张勃洋, 卢兴福, 张立元, 等. 冷轧极薄带钢复杂板形翘曲变形行为研究[J]. 机械工程学报, 2018, 54(12):184-192.

 

Zhang B Y, Lu X F, Zhang L Y, et al. Analysis of complex warping deformation for cold-rolled strip[J]. Journal of Mechanical Engineering, 2018, 54(12):184-192.

 

[29]Zhang Y, Yang Q, He A R, et al. Influence of strip wave-shape upon running deviation inside continuous annealing line[J]. Advanced Materials Research, 2012, 490-495:1191-1197.

 

[30]Li H B, Zhao Z W, Zhang J, et al. Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(9-12):2387-2399.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9