网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铜质高压开关触指多自由度摆动辗压成形工艺设计方法
英文标题:Design methods for multi-degree of freedom swing rolling process for copper high-voltage switch contact fingers
作者:熊薇1 2 韩星会1 2 庄武豪2 袁新鸿2 邓祖深2 
单位:1. 武汉理工大学 材料科学与工程学院 2. 武汉理工大学 现代汽车零部件技术湖北省重点实验室 
关键词:多自由度 摆动辗压成形 高压开关触指 金属流动 坯料形状 飞边形式 
分类号:TG306
出版年,卷(期):页码:2025,50(2):151-157
摘要:

铜质触指是高压开关的核心功能结构件,其制造性能直接决定了高压开关的服役性能和使用寿命。以铜质高压开关触指为研究对象,对其多自由度摆动辗压成形工艺的设计方法开展了研究。基于Deform-3D有限元模拟平台,建立了三维有限元仿真模型,探究了坯料形状及飞边形式对铜质高压开关触指多自由度摆动辗压成形的影响。并揭示了成形过程中等效应力、等效应变和成形力的变化规律。研究结果表明,采用仿形坯料和纵向飞边可以获得成形效果较好的铜质高压开关触指。在上述研究基础上,最终进行了工艺实验,获得了成形质量良好的铜质高压开关触指样件,证明了所提出的铜质高压开关触指多自由度摆动辗压成形工艺设计方法的有效性。

Copper contact finger is the core functional structure component of high-voltage switches, and its manufacturing performance directly determines the service performance and service life of high-voltage switches. Therefore, for the copper high-voltage switch contact fingers, the design method of multi-degree of freedom (DOF) swing rolling process was studied. Then, based on the Deform-3D finite element simulation platform, a 3D FE simulation model was established, and the influences of blank shape and flash form on the multi-DOF swing rolling of copper high-voltage switcher contact fingers were investigated and the variation laws of equivalent stress, equivalent strain and forming force during the forming process are revealed. The research results show that the copper high-voltage switch contact finger with good forming effect can be obtained by using the profiled blanks and the vertical flash. Based on the above-mentioned research, the process experiment was finally carried out, and the qualified copper high-voltage switch contact finger samples were obtained, which indicates that the proposed design method for multi-DOF swing rolling process of copper high-voltage switch contact fingers is effective.

基金项目:
国家自然科学基金资助项目(U21A20131);教育部创新团队发展计划项目(IRT17R83)
作者简介:
作者简介:熊薇(1998-),女,硕士研究生,E-mail:xiongw1122@163.com;通信作者:韩星会(1979-),男,博士,教授,E-mail:hanxinghuihlp@126.com
参考文献:

[1]Deng X B, Hua L, Han X H, et al. Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear[J]. Materials & Design, 2011, 32(3): 1376-1389.


 

[2]雷煜东, 詹梅, 樊晓光, 等. 带筋薄壁构件成形制造技术的发展与展望[J]. 西北工业大学学报, 2022, 40(1): 1-17.

 

Lei Y D, Zhan M, Fan X G, et al. A review on manufacturing technologies of thin-walled components with ribs [J]. Journal of Northwestern Polytechnical University, 2022, 40(1): 1-17.

 

[3]冯文成. 冷摆辗机摆头运动轨迹与成形力的理论分析及试验研究[D]. 北京: 中国机械科学研究总院集团有限公司, 2015.

 

Feng W C. Theoretical Analysis and Experimental Research on Orbital Head Trajectory and Forming Force of Orbital Cold Forming Press[D]. Beijing: China Academy of Machinery Science and Technology Group Co.,Ltd.,2015.

 

[4]车路长, 郭成, 胡亚民, 等. 摆动辗压接触面积系数的分析研究[J]. 锻压机械, 1996(4): 18-21.

Che L C, Guo C, Hu Y M, et al. Analysis and study on the factor of contacting surface in orbital forging process[J]. Metalforming Machinery, 1996(4): 18-21.

 

[5]Hu Y X, Han X H, Hua L, et al. Modeling for warping prediction and control in cold rotary forging of round plate[J]. Journal of Materials Processing Technology, 2023, 313: 117865.

 

[6]Hua L, Han X H. 3D FE modeling simulation of cold rotary forging of a cylinder workpiece[J]. Materials & Design, 2009, 30(6): 2133-2142.

 

[7]金秋, 冯玮. 非回转铝合金薄板零件冷摆辗成形规律研究[J]. 热加工工艺, 2019, 48(9): 125-128,131.

 

Jin Q, Feng W. Research on forming law of cold swing rolling of non-rotary aluminum alloy sheet part[J]. Hot Working Technology, 2019, 48(9): 125-128,131.

 

[8]Zheng Y, Liu D, Yang Y H, et al. Investigation on metal flow during the hot axial closed die rolling process for titanium alloy discs[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 2445-2458.

 

[9]Zhuang W H, Hua L, Han X H, et al. Distribution of microstructure and Vickers hardness in spur bevel gear formed by cold rotary forging[J]. Advances in Mechanical Engineering, 2014(6): 809276.

 

[10]Jiang S. Microstructure and texture of Ti-6Al-4V alloy deformed by rotary forging at elevated temperatures[J]. International Journal of Materials Research, 2020, 111(10): 807-813.

 

[11]Yuan S J, Wang X H, Liu G, et al. The precision forming of pin parts by cold-drawing and rotary-forging[J]. Journal of Materials Processing Technology, 1999, 86(1-3): 252-256.

 

[12]Merklein M, Plettke R, Opel S. Orbital forming of tailored blanks from sheet metal[J]. CIRP Annals, 2012, 61(1): 263-266.

 

[13]Jin Q, Han X H, Hua L, et al. Process optimization method for cold orbital forging of component with deep and narrow groove[J]. Journal of Manufacturing Processes, 2018, 33: 161-174.

 

[14]Hetzel A, Merklein M, Lechner M. Influence of a local short-term heat treatment on the formability of orbital formed functional components[J]. Procedia Manufacturing, 2021, 53: 72-79.

 

[15]Gu B T, Han X H, Hua L. Processing design and optimization on rotary forging of thin-walled structure[J]. Thin-Walled Structures, 2021, 162: 107567.

 

[16]Han X H, Zeng F F, Zhuang W H, et al. An innovative rotary rolling-forging process for manufacturing fork ring with extreme geometry[J]. Journal of Materials Processing Technology, 2023, 322: 118160.

 

[17]Han X H, Jin Q, Hua L. Research on cold orbital forming of complex sheet metal of aluminum alloy[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061013.

 

[18]Han X H, Hua L, Zhuang W H, et al. Process design and control in cold rotary forging of non-rotary gear parts [J]. Journal of Materials Processing Technology, 2014, 214(11): 2402-2416.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9