网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于GISSMO失效模型的750L大梁钢断裂失效行为研究
英文标题:Research on fracture failure behavior for 750L large beam steel based on GISSMO failure model
作者:殷继丽 丁明凯 展英姿 金光宇 曹光明 孙鹏 
单位:山东钢铁集团日照有限公司 钢铁研究院 
关键词:750L大梁钢 断裂失效 本构模型 GISSMO断裂失效模型 应力三轴度 
分类号:TG146
出版年,卷(期):页码:2025,50(2):250-255
摘要:

为研究750L大梁钢的断裂失效行为,对其进行动态拉伸试验,采用Swift-Hockett-Sherby模型处理得到真实应力-真实应变曲线,采用多线性弹塑性材料本构模型来有效表征材料的塑性流动行为。并对剪切、单向拉伸、中心孔、R5缺口及胀形5种典型应力状态下的断裂失效行为进行试验分析,得到断裂失效应变与平均应力三轴度并拟合出GISSMO曲线。最后,基于试验数据通过有限元仿真进行GISSMO断裂失效模型对标。结果表明:采用基于GISSMO断裂准则建立的750L大梁钢的GISSMO断裂准则模型对各试样拉伸过程进行仿真,抗拉力与断裂位移的误差均不超过2.67%,仿真结果与试验结果相吻合,说明该材料卡片能够有效预测750L大梁钢的断裂失效过程。

 

The dynamic tensile experiments of 750L large beam steel were conducted to investigate its fracture failure behavior, the true stress-true strain curves were obtained by the Swift-Hockett-Sherby model and the plastic flow behavior of the material was effectively characterized by a multi-linear elastic-plastic material constitutive model. Then,the experimental analysis on the fracture failure behavior under five typical stress states was conducted, including shear, uniaxial tension, center hole, R5 notch and bulging. Furthermore, the fracture failure strain and the average stress triaxiality were obtained, and the GISSMO curve was fitted. Finally,based on the experimental data, the GISSMO fracture model was benchmarked by finite element simulation. The results show that when the tensile process of each specimen is simulated by the GISSMO fracture criterion model of 750L large beam steel based on the GISSMO fracture criterion, the error between tensile force and fracture displacement does not exceed 2.67%, and the simulation results are consistent with the experimental results, indicating that the material card can effectively predict the fracture failure process of 750L large beam steel.

基金项目:
山东泰山产业领军人才专项(tscx202312011)
作者简介:
作者简介:殷继丽(1993-),女,硕士,工程师,E-mail:2803708366@qq.com
参考文献:

[1]赵清江,郭怡晖,梁宾,等.22MnB5高强度钢板材的断裂失效准则研究[J].塑性工程学报,2020,27(4):132-137.


 

Zhao Q J,Guo Y H,Liang B,et al.Research on fracture criterion of 22MnB5 high-strength steel plate[J].Journal of Plasticity Engineering,2020,27(4):132-137.

 

[2]郭鹤,张玉华.基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析[J].锻压技术, 2023, 48(10):235-244.

 

Guo H,Zhang Y H. Analysis on fracture failure model for dual-phase high-strength steel HC820/1180DPD+Z based on MMC criterion[J].Forging & Stamping Technology, 2023, 48(10):235-244.

 

[3]刘立熙,朱健,李志强.基于应力三轴度和罗德参数的6061和7075铝合金材料断裂失效分析[J].实验力学, 2017, 32(3):342-350.

 

Liu L X,Zhu J,Li Z Q.Fracture failure analysis of 6061 and 7075 aluminum alloy based on stress triaxiality and Lode parameter[J]. Journal of Experimental Mechanics, 2017, 32(3):342-350.

 

[4]朱建琳, 王超超, 王秋月. 基于Gissmo 失效准则的DP590双相钢和热成形钢的断裂特性研究[J]. 塑性工程学报, 2024, 31 (2):163-172. 

 

Zhu J L, Wang C C, Wang Q Y. Research on fracture characteristics of DP590 double-phase steel and hot-formed steel based on Gissmo failure criterion [J]. Journal of Plasticity Engineering, 2024, 31 (2): 163-172.

 

[5]徐晨阳,张骥超,连昌伟.基于GISSMO损伤模型的DH590高强钢断裂失效行为研究[J].塑性工程学报,2021,28(6):68-74.

 

Xu C Y,Zhang J C,Lian C W.Study on fracture failure behavior of DH590 high strength steel based on GISSMO damage model[J].Journal of Plasticity Engineering,2021,28(6):68-74.

 

[6]梁宾,赵岩,赵清江,等.基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J].机械工程学报, 2019, 55(18):53-62.

 

Liang B, Zhao Y, Zhao Q J,et al.On the prediction of failure in 6016 aluminum alloy sheet by Gissmo damage model[J].Journal of Mechanical Engineering,2019, 55(18):53-62. 

 

[7]马浩林.考虑损伤的热冲压薄壁结构抗撞性能研究[D].大连:大连理工大学,2024.

 

Ma H L. The Investigation of Crash Worthiness for Hot Stamping Thin-wall Structure Considering Damage[D]. Dalian:Dalian University of Technology,2024.

 

[8]Neukamm F, Feucht M, Bischoff M. On the application of continuum damage models to sheet metal forming simulations[J]. Ibai Publishing, 2008(4): 616-629. 

 

[9]黄建科.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海:上海交通大学,2009.

 

Huang J K. Study on Meso-damage Model and Ductile Fracture Criterion in Metal Forming Processes[D]. Shanghai:Shanghai Jiao Tong University,2009. 

 

[10]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].

 

GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems[S].

 

[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

 

[12]王连轩,张秀宏,牛月鹏.高强IF钢应变硬化模型研究及在仿真对标中的应用[J].四川冶金,2021,43(4):38-41.

 

Wang L X, Zhang X H,Niu Y P. Study on strain hardening models of HS-IF steel and application in simulation correlation[J]. Sichuan Metallurgy, 2021, 43(4):38-41.

 

[13]陈继恩.基于应力三轴度的材料失效研究[D].武汉:华中科技大学,2012.

 

Chen J E. Research of Material Failure Basic on Stress Triaxiality[D].Wuhan:Huazhong University of Science and Technology,2012. 

 

[14]Brvik T,Hopperstad O S,Berstad T. On the influence of stress triaxiality and strain rate on the behavior of a structural steel.Part II. Numerical study [J]. European Journal of Mechanics-A/Solids, 2003, 22(1):15-32.

 

[15]Teng X,Wierzbicki T. Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics,2006,73(12):1653-1678. 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9