网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
重型热挤压工艺与装备技术综述
英文标题:Research progress on heavy-duty hot extrusion process and equipment technology
作者:雷丙旺1 张磊2 周乐育3 马庆贤2 
单位:1.内蒙古北方重工业集团有限公司 2.清华大学 机械工程学院 3.中国机械总院集团北京机电研究所有限公司 
关键词:重型挤压工艺  垂直挤压机  难变形金属  挤压成形机理  大规格管材 
分类号:TG37
出版年,卷(期):页码:2025,50(3):1-13
摘要:

 重型挤压成形的三向压应力状态,使其在大规格难变形金属成形同步改性上具有独特的技术优势,决定着重型挤压产业的竞争力,是世界强国博弈的重要科技领域。从大规格、高性能难变形金属制件改性成形机理出发,归纳总结了国内36万吨垂直挤压机立项以来重型挤压工艺与重型挤压装备技术进展,包括重型挤压成形工艺技术、低塑性金属挤压成形工艺技术、重型挤压装备技术、典型产品开发与应用等,分析了各技术现状和需要继续研究的方向,旨在为关键领域核心制件的极端成形制造自主可控提供技术支撑。

 The triaxial compressive stress state of heavy extrusion forming provides unique technical advantages in the simultaneous modification of largescale difficult-to-deform metals, determining the heavy-duty extrusion industrial competitiveness and serving as a crucial technological field in the global technological competition among leading nations- Starting from the modification and forming mechanism of large-scale, high-performance and difficult-to-deform metal components, the technological advancements in heavy extrusion process and equipment since the establishment of the domestic 360 MN vertical extrusion press project were summarized These advancements included technologies for heavy-duty extrusion forming, low-plasticity metal extrusion forming, heavy-duty extrusion equipment and development and application of typical products The current status of each technology and the directions for further research were analyzed, aiming to provide technical support for the independent control of extreme forming manufacturing of core components in critical fields.

基金项目:
国防基础科研计划(JCKY2022208A002)
作者简介:
作者简介:雷丙旺(1966-),男,博士,正高级工程师 E-mail:leibingwang@163.com
参考文献:

 [1]庞佳丽. AerMet100钢热变形及晶粒演化行为研究[D]. 重庆:重庆大学,2024.


 

Pang J L. Study of Thermal Deformation and Grain Evolution Behavior of AerMet100 Steel[D]. Chongqing:Chongqing University, 2024

 

[2]王晋忠,王惠梅,王永飞,等. 变形态TC4钛合金热压缩本构方程及热加工图研究[J]. 热加工工艺,2023(23):100-104,108.

 

Wang J Z, Wang H M, Wang Y F, et al. Study on constitutive equation and thermal processing map of deformed TC4 titanium alloy under hot compression[J]. Hot Working Technology, 2023(23): 100-104, 108.

 

[3]Xiao Y Z H, Deng Y C, An Y X, et al. Homogenization forging and deformation mechanism of near β titanium alloy in α+β region[J]. Transactions of Nonferrous Metals Society of China, 2024: 431239.

 

[4]万志鹏. GH4720LI镍基合金高温变形行为及组织性能控制研究[D]. 哈尔滨:哈尔滨工业大学, 2020.

 

Wan Z P. Hot Deformation Behavior and Microstructure & Properties Control of Nibased Alloy GH4720LI[D]. Harbin:Harbin Institute of Technology, 2020.

 

[5]翟月雯,钟志平,金泉林. P91合金钢热变形力学行为的实验[J]. 塑性工程学报,2012,19(3):88-93.

 

Zhai Y W, Zhong Z P, Jin Q L. Experimental research on mechanical property of P91 under high temperature thermal deformation[J]. Journal of Plasticity Engineering, 2012, 19(3): 88-93.

 

[6]雷丙旺,李永清,庞海平,等. 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术[J]. 金属功能材料,2020,27(5):14-19.

 

Lei B W, Li Y Q, Pang H P, et al. Manufacturing technology of novel heat resistant steel G115 large diameter heavy wall seamless pipe[J]. Metallic Functional Materials, 2020,27(5): 14-19.

 

[7]刘海江,雷丙旺,胡永平,等. 大长径比管坯挤压工艺数值模拟及试制[J]. 塑性工程学报,2023,30(12):24-30.

 

Liu H J, Lei B W, Hu Y P, et al. Numerical simulation and trail production of extrusion technology for pipe billet with large length to diameter ratio[J]. Journal of Plasticity Engineering, 2023,30(12): 24-30.

 

[8]陈庆. 挤压参数对2A70(2D70)大规格挤压材细晶的影响[J]. 铝加工,2010(4):22-26.

 

Chen Q. Effect of extrusion parameters on grain refinement in 2A70(2D70) large scale extruded products[J]. Aluminium Fabrication, 2010(4): 22-26.

 

[9]李浩,裘桢,王燕. 6061棒材晶粒度大、粗晶环严重工艺研究[J]. 铝加工,2013(3):20-22.

 

Li H, Qiu Z, Wang Y. Research on large grain size and coarse grain ring of 6061 bar[J]. Aluminium Fabrication, 2013(3): 20-22.

 

[10]赵云路,刘静安. 第一讲 挤压筒的优化设计(1)[J]. 轻合金加工技术,1996(6):34-41.

 

Zhao Y L, Liu J A. Lecture 1: Optimal design of extrusion containers (1) [J]. Light Alloy Fabrication Technology, 1996(6): 34-41.

 

[11]刘长勇,张人佶,颜永年,等. 预应力钢丝缠绕剖分-组合大型挤压筒的热应力分析[J]. 工程力学,2011(5):207-211.

 

Liu C Y, Zhang R J, Yan Y N, et al. Thermal stress analysis on wire winded subdivided combined large extrusion container[J]. Engineering Mechanics, 2011(5): 207-211.

 

[12]吴任东,王雪凤,张磊. 预应力钢丝缠绕剖分-组合挤压筒[J]. 清华大学学报(自然科学版),2010,50(7):974-979.

 

Wu R D, Wang X F, Zhang L. Prestressed steel-wire winding splitassembled extrusion cylinder[J]. Journal of Tsinghua University(Science and Technology), 2010,50(7): 974-979.

 

[13]林峰,林智琳,张磊,等. 预应力钢丝缠绕技术在锻造/挤压压机上的应用[J]. 锻压装备与制造技术,2010,45(1):37-42.

 

Lin F, Lin Z L, Zhang L, et al. The application of pre-stressed wire wound technique on the forge/extrusion presses[J]. China Metalforming Equipment & Manufacturing Technology, 2010,45(1): 37-42.

 

[14]Sejourneti J. Origin of the invention of steel extrusion by glass lubrication[J]. Journal of the Franklin Institute, 1956, 261(3): 315-318.

 

[15]王宝顺,林奔,罗坤杰,等. 玻璃润滑剂在钢热挤压工艺中的应用[J]. 世界钢铁,2010,10(3):44-50.

 

Wang B S, Lin B, Luo K J, et al. Application of glass lubricant for hot extrusion of steel[J]. World Iron & Steel, 2010,10(3): 44-50.

 

[16]徐哲,段素杰,佟学文,等. 玻璃垫在钛合金型材挤压中的应用[J]. 中国材料进展,2008(11):37-40.

 

Xu Z, Duan S J, Tong X W, et al. The application of glass pad in titanium section extruding[J]. Materials China, 2008(11): 37-40.

 

[17]Gupta A K, Hughes K E, Sellars C M. Glass-lubricated hot extrusion of stainless steel[J]. Metals Technology, 1980, 7(1): 323-331.

 

[18]马晓晖,边翊,彭冲,等. P91无缝钢管立式热挤压工艺的边界条件[J]. 锻压技术,2011,36(4):119-122.

 

Ma X H, Bian Y, Peng C, et al. Boundary conditions during vertical hot extrusion of thick wall seamless steel tube[J]. Forging & Stamping Technology, 2011,36(4): 119-122.

 

[19]段素杰,邹丰. 新型无缝钢管热挤压用玻璃润滑剂的应用[A]. 第十二届全国塑性工程学术年会第四届全球华人塑性加工技术研讨会[C].重庆,2011.

 

Duan S J, Zou F. Application of novel glassbased lubricant in hot extrusion of seamless steel tubes[A]. The 12th National Annual Conference on Plasticity Engineering & the 4th Global Chinese Symposium on Plastic Processing Technology[C]. Chongqing, 2011.

 

[20]石英男,孙少斌,曲敬龙,等. 粉末高温合金热挤压工艺研究进展[J]. 粉末冶金工业,2024,34(1):124-133.

 

Shi Y N, Sun S B, Qu J L, et al. Research progress on hot extrusion process of P/M superalloy[J]. Powder Metallurgy Industry, 2024, 34(1): 124-133.

 

[21]张明,刘国权,胡本芙,等. 新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证[J]. 粉末冶金技术,2018,36(3):223-229.

 

Zhang M, Liu G Q, Hu B F, et al. Finite element simulation and experimental verification on hot extrusion of a novel nickelbase P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229.

 

[22]刘趁意,李付国,王玉凤,等. FGH96合金挤压变形工艺数值模拟[J]. 锻压装备与制造技术,2008,43(6):83-86.

 

Liu C Y, Li F G, Wang Y F, et al. The numerical simulation of FGH96 alloy extrusion process[J]. China Metalforming Equipment & Manufacturing Technology, 2008, 43(6): 83-86.

 

[23]刘光旭,王晓峰,杨杰,等, 不锈钢包覆层对挤压态FGH96合金表层组织的影响[J]. 热加工工艺,2022,51(5):37-40.

 

Liu G X, Wang X F, Yang J, et al. Effect of stainless steel coating on surface microstructure of hotextruded FGH96 alloy[J]. Hot Working Technology, 2022, 51(5): 37-40.

 

[24]贾建,陶宇,张义文,等. 第三代粉末冶金高温合金René104的研究进展[J]. 粉末冶金工业,2007(3):36-43.

 

Jia J, Tao Y, Zhang Y W, et al. Recent development of third generation P/M superalloy René104[J]. Powder Metallurgy Industry, 2007 (3): 36-43.

 

[25]Banik A, Green K A. The mechanical property response of turbine disks produced using advanced PM processing techniques[J]. Superalloys, 2000: 69-74.

 

[26]王锦永,郑磊,陈辉,等. GH625镍基高温合金热挤压缺陷原因探讨与分析[J]. 金属加工(热加工),2023(10):119-122.

 

Wang J Y, Zheng L, Chen H, et al. Discussion and analysis of the causes of hot extrusion defects in GH625 nickelbased superalloy[J]. MW Metal Forming, 2023 (10): 119-122.

 

[27]Chang D R, Krueger D D, Sprague R A. Superalloy powder processing, properties, and turbine disk applications[J]. Superalloys, 1984: 245-273.

 

[28]Barker J F, Vandermolen E H. Effect of processing variables on powdermetallurgy Rene′95[J]. Superalloys, 1972:1-23.

 

[29]Guedou J Y, Lautridou J C, Honnorat Y. Powder metallurgy superalloy for disks development and applications[J]. Journal of Materials Engineering and Performance, 1993, 2(4): 551-556.

 

[30]Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy doe chemistry, properties, phase formations and thermal stability[J]. Superalloys, 2016: 138678955.

 

[31]党利. Inconel 625合金大型厚壁管挤压变形宏微观规律研究[D]. 西安:西北工业大学,2016.

 

Dang L. Study on the Macro-micro Deformation Rules During the Extrusion of Large-scale Thick-walled Inconel 625 Pipe[D]. Xi′an: Northwestern Polytechnical University, 2016.

 

[32]聂龙飞. FGH96粉末高温合金热变形及动态再结晶演化研究[D]. 大连:大连理工大学, 2014.

 

Nie L F. Study on the Hot Deformation Behavior and Dynamic Recrystallization Behavior of FGH96 P/M Superalloy[D]. Dalian: Dalian University of Technology, 2014.

 

[33]宋晓俊,王超渊,汪煜,等. 挤压参数对镍基粉末冶金高温合金微观组织影响研究[J]. 铸造技术,2020,41(11):1024-1029.

 

Song X J, Wang C Y, Wang Y, et al. Effect of extrusion parameters on microstructure of Ni-based P/M superalloy[J]. Foundry Technology, 2020, 41(11): 1024-1029.

 

[34]刘先锋,刘冬,刘仁慈,等. Ti-435Al-4Nb-1Mo-01B合金的包套热挤压组织与拉伸性能[J]. 金属学报,2020,56(7):979-987.

 

Liu X F, Liu D, Liu R C, et al. Microstructure and tensile properties of Ti-435A1-4Nb-1Mo-0-1B alloy processed by hot canned extrusion[J]. Acta Metallurgica Sinica, 2020, 56(7): 979-987.

 

[35]刘仁慈,王震,刘冬,等. Ti-45-5A1-2Cr-2Nb-0-15B合金热挤压组织与拉伸性能研究[J]. 金属学报,2013,49(6):641-648.

 

Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-455A1-2Cr-2Nb-015B alloy processed by hot extrusion[J]. Acta Metallurgica Sinica, 2013, 49(6): 641-648.

 

[36]刘亮亮,刘冬,刘仁慈,等. 热处理对TiAl合金挤压方棒组织与拉伸性能的影响[J]. 稀有金属材料与工程,2017,46(S1):95-98.

 

Liu L L, Liu D, Liu R C, et al. Effect of heat treatments on microstructure and tensile properties of TiAl alloy extruded below Tα[J]. Rare Metal Materials and Engineering, 2017, 46(S1): 95-98.

 

[37]Zheng G M, Tang B, Zhao S K, et al. Evading the strengthductility tradeoff at room temperature and achieving ultrahigh plasticity at 800 ℃ in a TiAl alloy[J]. Acta Materialia, 2022, 225(1-2): 117585.

 

[38]Yang G, Xu X J, Sun T L, et al. A refined fully lamellar TiAl alloy extruded at αphase region: Microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2023, 888: 145804.

 

[39]强凤鸣. TiAl合金高温α相的变形行为及组织演化[D]. 西安: 西北工业大学, 2022.

 

Qiang F M. Deformation behavior and microstructural evolution of hightemperature α phase in TiAl alloys[D]. Xi′an: Northwestern Polytechnical University, 2022.

 

[40]强凤鸣,寇宏超,贾梦宇,等. β型γT

iAl合金热变形过程中组织演化及动态再结晶行为研究现状[J]. 精密成形工程,2022,14(1):11-18.

 

Qiang F M, Kou H C, Jia M Y, et al. Microstructure evolution and dynamic recrystallization behavior in βsolidifying γTiAl during thermomechanical processing[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 11-18.

 

[41]李金山,张铁邦,常辉,等. TiAl基金属间化合物的研究现状与发展趋势[J]. 中国材料进展,2010,29(3):1-5.

 

Li J S, Zhang T B, Chang H, et al. Recent achievements and future directions of TiAl based intermetallic compounds[J]. Materials China, 2010, 29(3): 1-5.

 

[42]林均品,张来启,宋西平,等. 轻质γTiAl金属间化合物的研究进展[J]. 中国材料进展,2010,29(2):1-8.

 

Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds[J]. Materials China, 2010, 29(2): 1-8.

 

 

[43]Li W Z, Sun T, Hu Y C, et al. Research on constant velocity extruding process control for 36,000-ton vertical extrusion press[J]. Journal of Dynamic Systems Measurement and Control, 2013, 135(4): 041009.

 

[44]宋阳. 36万吨黑色金属重型挤压技术打破国外垄断解决我国高端电力管道自主供应难题[J]. 中国设备工程,2016(4):10.

 

Song Y. 36000-ton heavyduty ferrous metal extrusion technology breaks foreign monopoly, resolving China′s critical challenge in achieving selfreliant supply of highend power pipeline components[J]. China Plant Engineering, 2016 (4): 10.

 

[45]Jia L, Li Y T, Zhang Y. A characterization for the deformation behavior of ascast P91 alloy steel and utilization in hot extrusion process[J]. Advances in Materials Science and Engineering, 2017: 6582739.

 

[46]刘强,曹铜壁,李文亮. 500 MN大吨位垂直热挤压钢管机组产品应用分析[J]. 金属加工(热加工),2014(1):77-79.

 

Liu Q, Cao T B, Li W L. Application analysis of 500 MN heavyduty vertical hot extrusion system for steel pipe production [J]. MW Metal Forming, 2014 (1): 77-79.

 

[47]张君,郭晓锋,杨建,等. 中国重型锻压装备现状及发展趋势思考[J]. 中国重型装备,2024(2):1-5,11.

 

Zhang J, Guo X F, Yang J, et al. Current situation and development trend reflection of heavy forging and pressing equipment in China[J]. China Heavy Equipment, 2024(2): 1-5,11.

 

[48]林峰,颜永年,吴任东,等. 重型模锻液压机承载结构的发展[J]. 锻压装备与制造技术,2007(5):27-31.

 

Lin F, Yan Y N, Wu R D, et al. Development of bearing structure for heavy duty forging hydraulic press[J]. China Metalforming Equipment & Manufacturing Technology, 2007(5): 27-31.

 

[49]林峰,颜永年,吴任东,等. 现代重型模锻液压机的关键技术[J]. 机械工程学报,2006(3):9-14.

 

Lin F, Yan Y N, Wu R D, et al. Key technologies of modern heavy die forging press[J]. Journal of Mechanical Engineering, 2006(3): 9-14.

 

[50]高璐,崔明亮,赵石岩,等. 800 MN模锻液压机组合预紧机架危险点分析[J]. 重型机械,2012(3):51-54.

 

Gao L, Cui M L, Zhao S Y, et al. Analysis on dangerous points of pretightened assembled frame of 800 MN dieforging hydraulic press[J]. Heavy Machinery, 2012 (3): 51-54.

 

[51]彭俊斌,颜永年,张人佶,等. 机械结构预应力坎合连接的原理[J]. 清华大学学报(自然科学版),2007(8):1274-1277.

 

Peng J B, Yan Y N, Zhang R J, et al. Prestressed bumpy ridge joining method for mechanical structures[J]. Journal of Tsinghua University(Science and Technology), 2007 (8): 1274-1277.

 

[52]邓晨曦,吴任东,颜永年,等. 大型承载框架钢丝预应力缠绕技术研究[J]. 新技术新工艺,2008(2):52-54,3.

 

Deng C X, Wu R D, Yan Y N, et al. The research of wire winding on the ultra-heavy prestressed frame[J]. New Technology & New Process, 2008 (2): 52-54,3.

 

[53]彭俊斌,颜永年,张人佶,等. 预应力钢丝缠绕机架坎合梁的整体性分析[J]. 机械工程学报,2008,44(12):308-313.

 

Peng J B, Yan Y N, Zhang R J, et al. Integrity analysis of bumpyridge beam in the prestressed wire winded framework[J]. Journal of Mechanical Engineering, 2008, 44(12): 308-313.

 

[54]彭俊斌,颜永年,张人佶,等. 重型机械领域中的预应力坎合连接原理及应用[J]. 机械工程学报,2008(6):107-113.

 

Peng J B, Yan Y N, Zhang R J, et al. Principle and application of pre-stressed bumpyridge in field of heavy mechanism[J]. Journal of Mechanical Engineering, 2008 (6): 107-113.

 

[55]Wang W J, Lin F, Zhang L, et al. Analysis on the winding process of prestressed wire wound orthogonal preload frame on the basis of finite element[A]. Proceedings of the 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering[C]. Hangzhou,2015.

 

[56]Strano M, Monno M, Rossi A. Optimized design of press frames with respect to energy efficiency[J]. Journal of Cleaner Production, 2013 (41): 140-149.

 

[57]Wang W J, Zhang L, Lin F. Stiffness ratio calculation method research for prestressed wire-wound orthogonal preload frame[J]. Engineering Mechanics, 2016, 33(3): 214-221.

 

[58]Liu H X, Yan Y N, Zeng P, et al. Pillar and arched girder totally bumpy ridge joining frame with steel wire wound[J]. Journal of Mechanical Engineering, 2011, 47(4): 82-87.

 

[59]Li J Q, Zheng D Y, Zhang Z, et al. Simulation analysis of cylinder winding prestress based on Ansys[A]. Proceedings of 2021 International Conference on Advanced Technologies and Applications of Modern Industry[C]. Wuhan, 2021.

 

[60]姚静,曹晓明,沙桐,等. 重型锻造液压机流控新技术[J]. 液压与气动,2019(12):1-14.

 

Yao J,Cao X M, Sha T, et al. New technology for heavyduty forging hydraulic press[J]. Chinese Hydraulics & Pneumatics, 2019 (12):1-14.

 

[61]汪飞雪,姚静,胡福泰,等. 锻造液压机振动特性机-液联合仿真[J]. 中国机械工程,2020,31(10):1175-1189.

 

Wang F X, Yao J, Hu F T, et al. Mechanicalhydraulic cosimulation of vibration characteristics for forging hydraulic presses[J]. China Mechanical Engineering, 2020, 31(10): 1175-1189.

 

[62]Wang W, Lin F, Zhang L, et al. Experimental study and finite element analysis on the frame of multid

irectional forging press[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(12): 2112-2122.

 

[63]Zhang Y, Wang X, Wan Y. Numerical calculation of a 20 MN heavy duty hydraulic press for analyzing the double frame prestressed steel wire winding[J]. Frontiers in Mechanical Engineering, 2023, 8:1086124.

 

[64]Zhang X, Wang X, Zhang Z, et al. Research on a double frame hydraulic press with PTS using winding steel wires[J]. Journal of Vibroengineering, 2023, 25(4): 811-824.

 

[65]Ganeshan R. Optimization of Tool Life and Performance in Cold Forging by Pre-stress Design[D]. Columbus: The Ohio State University, 2005.

 

[66]Vadolia G, Singh K P, Gupta M K, et al. Introduction to isostatic pressing and its optimization[J]. Modeling and Optimization in Manufacturing, 2021:157-192.

 

[67]余娜. 打破耐热材料垄断火电管道国产化发展提速[N]. 中国工业报,2024-11-04(007).

 

Yu N. Breaking the international monopoly of heatr

esistant materials and accelerating the localization development of thermal power pipelines[N]. China Industry News,  2024-11-04 (007).

 

[68]陈俊豪,宁保群. P92钢高温蠕变过程中显微组织演变研究现状及强化途径[J]. 材料导报,2014,28(17):53-59.

 

Chen J H, Ning B Q. Research status of microstructure evolution and strengthening methods of P92 steel in the process of high temperature creep[J]. Materials Reports, 2014, 28(17): 53-59.

 

[69]内蒙古北方重工业集团有限公司. 630 ℃超超临界机组G115大口径厚壁无缝钢管制造方法 [P]. 中国:CN115074504B,2023-07-14.

 

Inner Mongolia North Heavy Industry Group Corp. Ltd.. Manufacturing method of G115 large-diameter thick walled seamless steel pipe for 630 ℃ ultra supercritical unit[P].China: CN115074504B, 2023-07-14.

 

[70]高虹,翟丽丽,何周苏秦,等. 石化高压临氢装置用大口径厚壁不锈钢无缝管的试制生产[J]. 现代冶金,2020(48):45-49.

 

Gao H, Zhai L L, He Z S Q, et al. Trial production of largediameter thick walled stainless steel seamless pipes for petrochemical highpressure hydrogenation units[J]. Modern Transportation and Metallurgical Materials, 2020 (48): 45-49.

 

[71]陈勇,刘珂,周贵禄,等. 超大口径厚壁不锈钢无缝钢管生产工艺[R]. 四川省,四川三洲特种钢管有限公司,2011-12-01.

 

Chen Y, Liu K, Zhou G L, et al. Production process of ultra large caliber thick walled seamless stainless steel pipes[R]. Sichuan, Sichuan Sanzhou Special Steel Pipe Co., Ltd., 2011-12-01.

 

[72]伊人洁,王婀娜,边华川,等. 大直径厚壁TP347H不锈钢管的研制与开发[J]. 钢管,2009(38):34-37.

 

Yi R J, Wang E N, Bian H C, et al. Research and development of largesized heavywall TP347H stainless steel pipe[J]. Steel Pipe, 2009 (38): 34-37.

 

[73]刘立鑫. 钛合金无缝管材热轧及热处理工艺研究[D]. 沈阳: 沈阳工业大学,2024.

 

Liu L X. Research on Hot Rolling and Heat Treatment Process of Titanium Alloy Seamless[D]. Shenyang : Shenyang University of Technology, 2024.

 

[74]石英男,孙少斌,曲敬龙,等. 粉末高温合金热挤压工艺研究进展[J]. 粉末冶金工业,2024,34(1):124-133.

 

Shi Y N, Sun S B, Qu J L, et al. Research progress on hot extrusion process of P/M superalloy[J]. Powder Metallurgy Industry, 2024,34(1): 124-133.

 

[75]陈正宗,刘正东,包汉生. 固溶处理对CN617耐热合金组织和硬度的影响[J]. 金属热处理,2014,39(12):27-30.

 

Chen Z Z, Liu Z D, Bao H S. Effects of solution treatment on microstructure and hardness of heat-resistant alloy CN617[J]. Heat Treatment of Metals, 2014, 39 (12): 27-30.

 

[76]ASME SA-213,锅炉、过热器和换热器用铁素体和奥氏体合金钢无缝钢管规范[S].

 

ASME SA-213, Specification for seamless ferritic and austenitic alloy—Steel boiler, superheater and stainless steel heat exchanger tubes[S].

 

[77]EN 10305-6,精密应用用钢管 交货技术条件第6部分:液压和气动动力系统用焊接冷拉管材[S].

 

EN 10305-6, Steel tubes for precision applications—Technical delivery conditions  Part 6: Welded cold drawn tubes for hydraulic and pneumatic power systems[S].

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9