网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新一代大口径高强度火炮身管锻件塑性成形分布规律
英文标题:Distribution laws of plastic forming for new generation large-caliber high strength artillery barrel forgings
作者:刘嘉勉1 吕鸿儒1 刘万颖2 王星2 马庆贤1 
单位:1.清华大学 机械工程系 2. 内蒙古北方重工业集团有限公司 
关键词:塑性成形工艺 身管锻件 闭式镦粗 反挤压冲孔 挤压成形 金属流动 
分类号:TG314.3
出版年,卷(期):页码:2025,50(3):23-29
摘要:

 掌握身管锻件成形分布规律是保证身管锻件成形质量的前提,对新一代大口径火炮身管服役性能具有决定性作用。采用物理模拟与数值模拟相结合的研究方法,针对采用电渣重熔工艺生产的Cr-Ni-Mo-V钢在身管制坯过程中存在的问题,提出了一种新的成形工艺流程,即闭式镦粗、反挤压冲孔、挤压成形复合工艺。研究结果表明,闭式镦粗可以有效破碎粗大枝晶并提高组织均匀性;反挤压冲孔有助于形成空心厚壁身管坯料,但存在内部缺陷时易导致缺陷扩展;挤压成形工艺则能够确保管壁厚度的均匀性和金属流速的稳定性。物理模拟与数值模拟结果的一致性验证了所提工艺的有效性,为实际生产提供了重要的理论依据和技术支持。

 Mastering the forming distribution law of barrel forgings is the prerequisite for ensuring the forming quality of barrel forgings and plays a decisive role in the service performance of the new generation large-caliber artillery barrels. Therefore, a research method combining physical simulation and numerical simulation was adopted. Then, for the problems existing in the artillery barrel blank forming process of Cr-Ni-Mo-V steel produced by the electroslag remelting process, a new forming process flow was proposed, namely the composite process of closed upsetting, reverse extrusion punching and extrusion forming. The results show that the closed upsetting effectively breaks up the coarse dendrites and improves the uniformity of structure. The reverse extrusion punching helps to form a hollow thick-walled barrel blank, but it is easy to cause defect expansion when there are internal defects. The extrusion forming process ensures the uniformity of tube wall thickness and the stability of metal flow rate. The consistency of the physical and numerical simulation results verifies the effectiveness of the proposed process and provides important theoretical basis and technical support for the actual production.

基金项目:
国防基础科研计划(JCKY2022208A002)
作者简介:
作者简介:刘嘉勉(1996-),男,硕士研究生 E-mail:liu.jiamian@foxmail.com 通信作者:马庆贤(1964-),男,博士,教授 E-mail:maqxdme@mail.tsinghua.edu.cn
参考文献:

 [1]张楠, 吕超然, 徐乐. 火炮身管用钢现状及发展趋势[J]. 中国冶金, 2019, 29(5): 6-9. 


 

Zhang N, Lyu C R, Xu L. Current status and development trend of gun barrel steel[J]. China Metallurgy, 2019, 29(5): 6-9.

 

[2]袁晓冬, 高灵清, 张海峰. 炮管材料的发展现状与趋势[J]. 材料开发与应用, 2017, 32(5): 98-104. 

 

Yuan X D, Gao L Q, Zhang H F. Development and prospect of gun barrel materials[J]. Development and Application of Materials, 2017, 32(5): 98-104.

 

[3]胡士廉, 吕彦, 胡俊, 等. 高强韧厚壁炮钢材料的发展[J]. 兵器材料科学与工程, 2018, 41(6): 108-112. 

 

Hu S L, Lyu Y, Hu J, et al. Progress in high strength and toughness of steel material for thickwall cannon[J]. Ordnance Material Science and Engineering, 2018, 41(6): 108-112.

 

[4]王晓花, 康晓雪, 马骏. 电渣重熔宏微观多尺度数值研究进展[J]. 辽宁石油化工大学学报, 2018, 38(5): 1-8. 

 

Wang X H, Kang X X, Ma J. Research progress in macro/microscopic multiscale numerical simulation of electroslag remelting[J]. Journal of Liaoning Petrochemical University, 2018, 38(5): 1-8.

 

[5]Kharicha A, Karmisibaki E, Wu M, et al. Review on modeling and simulation of electroslag remelting[J]. Steel Research International, 2018, 89(1): 1700100.

 

[6]张月星, 李强. 浅谈火炮身管加工工艺[J]. 装备制造技术, 2014(2): 241-242. 

 

Zhang Y X,Li Q. Study on processing craft of gun barrel[J]. Equipment Manufacturing Technology, 2014(2): 241-242.

 

[7]黄进峰, 张津, 陈俊宇, 等. 火炮身管失效机理与炮钢的发展[J]. 火炮发射与控制学报, 2023, 44(1): 10-18, 29. 

 

Huang J F, Zhang J, Chen J Y, et al. Failure mechanisms of gun barrels and the development of gun steel[J]. Journal of Gun Launch & Control, 2023, 44(1): 10-18, 29.

 

[8]雷丙旺, 李永清, 庞海平, 等. 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术[J]. 金属功能材料, 2020, 27(5): 14-19. 

 

Lei B W, Li Y Q, Pang H P, et al. Manufacturing technology of novel heat resistant steel G115 largediameter heavy wall seamless pipe[J]. Metallic Functional Materials, 2020, 27(5): 14-19.

 

[9]Jia L, Li Y T, Hui T J, et al. Numerical simulation and experimental research on microstructural evolution during compact hot extrusion of heavy caliber thickwall pipe[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 6.

 

[10]Eivani A R, Rahimi F. Inhomogeneity in deformation, microstructure, tensile properties and damage development in AA1050 during multiple cycles of pure shear extrusion[J]. Materials Science and Engineering: A, 2019, 745: 159-167.

 

[11]Faraji G, Jafarzadeh H, Jeong H J, et al. Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy[J]. Materials & Design, 2012, 35: 251-258.

 

[12]黄苏婷, 陈震, 杨晨东, 等. 热冲压超高强钢模具冲孔试验研究[J]. 塑性工程学报, 2022, 29(9): 47-55.

 

 Huang S T, Chen Z, Yang C D, et al. Experimental research on die punching of hot stamped ultrahigh strength steel[J]. Journal of Plasticity Engineering, 2022, 29(9): 47-55.

 

[13]蔡荣飞,王辉,唐友莉,等.基于数值模拟的铝合金四通管双向挤压精密成形工艺优化[J].锻压技术,2024,49(1):89-97.

 

Cai R F,Wang H,Tang Y L,et al.Optimization on twoway extrusion precision forming process for aluminum alloy fourway pipe based on numerical simulation[J]. Forging & Stamping Technology,2024,49(1):89-97.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9