网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同化学成分对TP316H不锈钢力学性能及铁素体含量的影响
英文标题:Influence of different chemical components on mechanical properties and ferrite content of TP316H stainless steel
作者:涂明金1 贾晓斌1 2 雷丙旺1 尹冉冉1 高猛1 姚建清1 
单位:1. 内蒙古北方重工业集团有限公司 2. 北京科技大学 新金属材料国家重点实验室 
关键词:TP316H不锈钢 室温力学性能 高温力学性能 晶间腐蚀 铁素体 
分类号:TG142.1
出版年,卷(期):页码:2025,50(3):205-211
摘要:

 为了探究不同化学成分对TP316H不锈钢力学性能及铁素体含量的影响规律,研究了不同碳含量(质量分数)对室温拉伸试验、高温拉伸试验及晶间腐蚀的影响规律。利用Thermo-Calc软件计算得到了TP316H不锈钢在热力学平衡条件下的凝固过程和平衡相组成。结果表明,随着碳含量从0.019%增加至0.060%,其室温屈服强度由241 MPa提高至258 MPa,抗拉强度由579 MPa提高至604 MPa,高温屈服强度由124 MPa提高至129 MPa,抗拉强度由407 MPa提高至449 MPa,且强度增加幅度逐渐降低。当碳含量超过0.06%时,易产生晶间裂纹。在舍夫勒组织图中,TP316H不锈钢落在完全奥氏体区边缘,其铁素体含量与Cr当量和Ni当量密切相关。当基体存在铁素体时,通过在高温1200 ℃保温10 h后,铁素体含量控制在1%以下。

To investigate the influence laws of chemical composition on the mechanical properties and ferrite content of TP316H stainless steel, the different influence laws of carbon content (mass fraction) on the tensile properties at  room temperature,tensile properties at high-temperature and intergranular corrosion properties were studied. The Thermo-Calc software was used to calculate the solidification process and equilibrium phase composition of TP316H steel under thermodynamic equilibrium conditions. The results show that as the carbon content increases from 0.019% to 0.060%, the yield strength at room temperature increases from 241 MPa to 258 MPa, the tensile strength increases from 579 MPa to 604 MPa, the yield strength at high temperature increases from 124 MPa to 129 MPa, the tensile strength increases from 407 MPa to 449 MPa, and the increase range of strength decreases. When the carbon content exceeds 0.06%, intergranular cracks are prone to occur. In the Shaeffler structure diagram, TP316H stainless steel falls on the edge of fully austenitic zone, and its ferrite content is closely related to the Cr equivalent and Ni equivalent. When ferrite exists in the matrix,  the ferrite content is below 1% by holding the stainless steel at 1200 ℃ for 10 h.

 

基金项目:
作者简介:
作者简介:涂明金(1982-),男,硕士,正高级工程师 E-mail:tumingjin2004@163.com 通信作者:贾晓斌(1988-),男,硕士,高级工程师 E-mail:814308071@qq.com
参考文献:

 [1]宋广懂, 李鑫, 刘萌萌, . CN含量对钠冷快堆热交换器用316H奥氏体不锈钢组织和性能影响[J]. 钢铁钒钛, 2023, 44(1): 135-141.


 


Song G D, Li X, Liu M M, et al. Effect of C and N content on the microstructure and performance of 316H austenitic stainless steel used in sodiumcooled fast reactor heat exchanger[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 135-141.


 


[2]崔利民, 李青, 胡英超, . 核电用超纯奥氏体不锈钢316H电渣重熔氢含量控制[J]. 南方金属, 2023(3): 1-3.


 


Cui L M, Li Q, Hu Y C, et al. Control of hydrogen content by electroslag remelting of ultrapure austenitic stainless steel 316H for nuclear power[J]. Southern Metals, 2023(3): 1-3.


 


[3]丁永三, 鲁立, 朱红彬, . 火电站用T23/TP316H异种金属焊接接头服役损伤分析[J]. 电焊机,2021,51(3): 59-63.


 


Ding Y S, Lu L, Zhu H B, et al. Damage analysis of T23/TP316H dissimilar metal weld for thermal power plant after service[J]. Electric Welding Machine, 2021,51(3):59-63.


 


[4]姜万军, 王金富, 牛存厚, . 奥氏体不锈钢管道在石油化工装置的应用[J]. 炼油技术与工程, 2023, 53(9): 35-37.


 


Jiang W J, Wang J F, Niu C H, et al. Application of austenitic stainless steel pipes in petrochemical plants[J]. Refining Technology and Engineering, 2023, 53(9): 35-37.


 


[5]赵明, 常远, 宋耀辉, . 固溶处理对316不锈钢晶粒长大和硬度的影响[J]. 锻压技术, 2024, 49(3): 194-201.


 


Zhao M, Chang Y, Song Y H, et al. Influence of solution treatment on grain growth and hardness of 316 stainless steel [J]. Forging & Stamping Technology, 2024, 49(3): 194-201.


 


[6]贾晓斌, 秦瑞廷, 涂明金, . 挤压316H奥氏体不锈钢大口径管材晶粒度控制[J]. 金属热处理, 2024, 49(4): 168-173.


 


 


Jia X B, Qin R T, Tu M J, et al. Grain size control of extruded 316H austenitic stainless steel largediameter pipes [J]. Heat Treatment of Metals, 2024, 49(4):168-173.


 


[7]苏宁, 刘凤军, 李月超. 高强管道用1Cr16Ni4Mo2N不锈钢的热处理与组织性能研究[J]. 锻压技术, 2024, 49(6): 215-220.


 


Su N, Liu F J, Li Y C. Study on heat treatment and microstructure and properties of 1Cr16Ni4Mo2N stainless steel for highstrength pipeline [J]. Forging & Stamping Technology, 2024, 49(6): 215-220.


 


[8]李轶楠, 姜文勇, 冯义成, . 碳含量对00Cr22Ni5Mo3N双相不锈钢组织和性能的影响[J]. 金属热处理, 2015, 40(7): 55-58.


 


Li Y N Jiang W Y, Feng Y C, et al. Effect of C content on microstructure and properties of 00Cr22Ni5Mo3N duplex stainless steel [J]. Heat Treatment of Metals, 2015, 40(7): 55-58.


 


[9]李玉贵, 赵志华, 徐文朝, . 12Cr-1Al-3Mn 铁素体不锈钢本构方程及热加工图 [J]. 锻压技术, 2024, 49(8): 224-238.


 


Li Y G, Zhao Z H, Xu W C, et al. Constitutive equation and hot processing map of 12Cr-1Al-3Mn ferritic stainless steel [J]. Forging & Stamping Technology, 2024, 49(8): 224-238.


 


[10]李昂, 吴福, 高蔚, . 核电用316H不锈钢的蠕变性能评估[J]. 稀有金属材料与工程, 2021, 50(2): 531-536.


 


Li A, Wu F, Gao W, et al. Creep data prediction for type 316H stainless steel served in nuclear power plant[J]. Rare Metal Materials and Engineering, 2021, 50(2): 531-536.


 


[11]宋艳玲, 索忠源, 王鑫, . 碳含量对ZGCr17Ni2马氏体不锈钢组织和力学性能的影响[J]. 铸造, 2019, 68(4): 332-334.


 


Song Y L, Suo Z Y, Wang X, et al. Effect of carbon content on microstructure and mechanical properties of ZGCr17Ni2 martensitic stainless steel [J]. Foundry, 2019, 68(4): 332-334.


 


[12]刘振宝, 梁剑雄, 杨志勇, . 碳含量对15-5PH沉淀硬化不锈钢板材的组织与性能的影响[J]. 航空材料学报, 2011, 31(1): 7-11.


 


Liu Z B, Liang J X, Yang Z Y, et al. Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel [J]. Journal of Aeronautical Materials, 2011, 31(1): 7-11.


 


[13]胡潘, 毛宏焕, 杨弋涛. 碳含量对430铁素体不锈钢耐晶间腐蚀性能的影响[J]. 腐蚀与防护, 2016, 37(12): 956-960.


 


Hu P, Mao H H, Yang Y T. Effect of carbon content on intergranular corrosion of 430 ferritic stainless steel [J]. Corrosion & Protection, 2016, 37(12): 956-960.


 


[14]GB/T 2281—2021, 金属材料拉伸试验第1部分:室温试验方法[S].


 


GB/T 2281—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


 


[15]ASTM E21—2020, 金属材料高温拉伸试验标准试验方法[S].


 


ASTM E21—2020, Standard test methods for elevated temperature tension tests of metallic materials[S].


 


[16]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].


 


GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].


 


[17]GB/T 4334—2020, 金属和合金的腐蚀奥氏体及铁素体-奥氏体(双相)不锈钢晶间腐蚀试验方法[S].


 


GB/T 4334—2020, Corrosion of metals and alloys—Test methods for intergranular corrosion of austenitic and ferriticaustenitic (duplex) stainless steels[S].


 


[18]GB/T 15749—2008, 定量金相测定方法[S].


 


GB/T 15749—2008, Measuring method in quantitative metallography[S].


 


[19]陈思悦, 张鑫, 杨弋涛. 碳氮含量对含钒铁素体不锈钢高温性能的影响[J]. 材料科学与工艺, 2015, 23(1): 75-82.


 


Chen S Y, Zhang X, Yang Y T. The influence of carbon and nitrogen content on high temperature performance of vanadium containing ferritic stainless steel[J]. Materials Science & Technology, 2015, 23(1): 75-82.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9