网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高热强性特种钢压扭成形细晶强化工艺
英文标题:Compression-torsion forming and fine-grain strengthening process for high-temperature and high-strength special steel
作者:刘科虹 张瑞锋 葛东伟 王莹莹 刘晓蓉 
单位:内蒙古北方重工业集团有限公司 
关键词:压扭成形 动态再结晶 富铌相 晶粒细化  局部应力集中 
分类号:TG316
出版年,卷(期):页码:2025,50(3):212-218
摘要:

 针对高热强性特种钢出现的屈服强度和冲击功偏低的问题,分析发现晶粒尺寸过大和大尺寸富铌相聚集分布等微观组织结构导致的材料的局部应力集中是主要原因。通过系统的微观组织表征阐明了材料的晶粒粗化机制与动态再结晶行为。基于压缩-扭转复合变形的协同剪切效应理论,在单轴变形体系中引入多向剪切应力场,成功构建了促进动态再结晶的应变路径。通过优化压扭成形工艺参数与热处理制度,开发出细晶强化新工艺。实验结果表明:压扭大变形工艺可同步实现晶粒超细化(晶粒度为6.0级)与富铌相均匀弥散分布,使材料屈服强度提升至941 MPa,冲击功达到27.6 J。

 For the problems of lower yield strength and impact energy in high-temperature and high-strength special steel, it was found that the main cause was the local stress concentration in the material, which was caused by the microstructures such as gains with overly large sizes and aggregated distribution of large-sized Nb-rich phase. Through systematic microstructural characterization, the grain coarsening mechanisms and the dynamic recrystallization behavior were elucidated. Based the synergistic shear effect theory of compression-torsion composite deformation, a multi-directional shear stress field was introduced in uniaxial deformation system, establishing an strain path conducive to dynamic recrystallization successfully. A novel fine-grain strengthening process was developed through optimization of compression-torsion forming process parameters and heat treatment system. Experimental results demonstrate that the compression-torsion process with severe deformation can achieve the  simultaneous grain ultra-refinement (grain size is Grade 6.0) and the homogeneous dispersion of Nb-rich phases, resulting in enhanced mechanical properties with the yield strength of 941 MPa and the impact energy of 27.6 J.

基金项目:
国防基础科研计划(JCKY2022208A002)
作者简介:
作者简介:刘科虹(1980-),男,硕士,正高级工程师 E-mail:13847203575@163.com
参考文献:

 [1]Kemin X, Zhen W, Yan L. FEM analysis of cylinder twist-compression deformation regularity[J]. Journal of Materials Processing Technology, 1997,69(1-3):148-151.


 

[2]丁林高.TC4 合金热扭压成形数值模拟[D]. 合肥:合肥工业大学,2007.

 

Ding L G. Numerical Simulation of Heat Pressure and Torsion of TC4 Alloy[D]. Hefei:Hefei University of Technology, 2007.

 

[3]弭光宝,薛克敏,张早明,等. 压扭变形工艺及在材料改性中的应用[J]. 哈尔滨工业大学学报,2009,41(11):169-172.

 

Mi G B, Xue K M, Zhang Z M, et al. Compresstwist process and its application in property modification of material[J]. Journal of Harbin Institute of Technology, 2009,41(11):169-172.

 

[4]韩瑞. 压扭变形AZ31镁合金微观组织和织构演变的研究[D].太原:中北大学,2023.

 

Han R. Microstructure and Texture Evolution of AZ31 Magnesium Alloy During Compressiontorsion Deformation[D].Taiyuan: North University of China,2023.

 

[5]薛克敏,许锋,李萍, 等.20CrMnTi 钢晶粒压扭变形的均匀化[J].塑性工程学报,2010,17(1):18-21.

 

Xue K M, Xu F, Li P, et al. Research on high pressure torsion forming for the homogenization of the grains of 20CrMnTi steel[J]. Journal of Plasticity Engineering, 2010,17(1):18-21.

 

[6]贾蕾琛. 镁合金压扭变形组织性能调控研究[D]. 太原:中北大学,2024.

 

Jia L C. Research on Microstructure and Properties Control of Magnesium Alloy During Compressiontorsion Deformation[D]. Taiyuan: North University of China,2024.

 

[7]Wang F,Sandlbes S,Diehl M, et al. In situ observation of collective grainscale mechanics in Mg and Mgrare earth alloys[J]. Acta Materialia, 2014,80:77-93.

 

[8]Dolzhenko P,Tikhnoova M,Belyakov A,et al. Dynamicrecrystallization of a highMn TWIP steel during multipleforging at 800 ℃[A].Proceeding of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures[C]. Tomsk, 2018.

 


[9]魏中顺,蓝永庭,贾勉,等.扭转变形制备的梯度结构镁合金微结构与力学性能研究进展[J].热加工工艺, 2024,53(10):1-9.

 

Wei Z S,Lan Y T,Jia M, et al. Research progress on microstructure and mechanical properties of gradient structure magnesium alloys prepared by torsion deformation[J]. Hot Working Technology, 2024,53(10):1-9.

 

[10]吴玉成,姜宏伟,胡园,等.多向锻造对M50钢一次碳化物破碎机制的影响[J].中国冶金,2020,30(9):98-103,135.

 

Wu Y C,Jiang H W,Hu Y, et al.Effect of multi-direction foring on carbide evolution of M50 steel[J].China Metallurgy, 2020,30(9):98-103,135.

 

[11]牛犇,庞玉华,孙琦,等. 三维剧烈塑性法轧制F45MnVS超细晶钢棒及细化机理[J]. 锻压技术,2023,48(1):149-157.

 

Niu B,Pang Y H,Sun Q,et al.Three dimensional severe plastic rolling of F45MnVS ultrafine grain steel rod and its refining mechanism [J]. Forging & Stamping Technology,2023,48(1): 149-157.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9