网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压成形工艺下GH2070P(HT700P)铁镍基高温合金无缝管微观组织特征及强化机制
英文标题:Microstructure characteristics and strengthening mechanism of Fe-Ni-based superalloy GH2070P(HT700P) seamless tube under extrusion forming process
作者:李媛媛 秦瑞廷 陈献刚 周仲成 王燕玲 张子杨 
单位:内蒙古北方重工业集团有限公司 特钢事业部 
关键词:HT700P铁镍基高温合金 挤压成形 微观组织 力学性能 第二相析出强化 
分类号:TG376.9
出版年,卷(期):页码:2025,50(3):255-261
摘要:

 采用150 MN制坯机和360 MN挤压机试制了HT700P铁镍基高温合金无缝管,对试制的HT700P铁镍基高温合金无缝管的系列温度拉伸性能及微观组织、低倍夹杂、晶粒尺寸及第二相析出物特征进行了系统的表征。结果表明:固溶后HT700P铁镍基高温合金室温下的平均屈服强度约为343 MPa,700 ℃高温条件下的平均屈服强度约为380 MPa;所试制的高温合金以奥氏体组织为主,晶粒平均直径约为Φ99.3 μm,晶粒度约为3.0级;非金属夹杂以B类、D类非金属夹杂为主,夹杂等级均为0.5。所试制的HT700P铁镍基高温合金无缝管的强化机制以细晶强化及第二相析出强化为主,细晶强化与第二相析出强化引起的强度贡献分别约占总强化量的30.7%和66.9%

 Fe-Ni based superalloy HT700P seamless tubes were trial-produced by 150 MN blank making machine and 360 MN extruder, and the tensile properties, microstructure, macro inclusions, grain size and characteristics of second-phase precipitates for the trial-produced Fe-Ni based superalloy HT700P seamless tubes at a series of temperatures were systematically characterized. The results show that after solution treatment, the average yield strength of Fe-Ni based superalloy HT700P at room temperature is about 343 MPa, and the average yield strength at 700 ℃ is about 380 MPa. The trial-produced superalloy mainly consists of austenite structure, with an average grain diameter of about Φ99.3 μm and a grain size of about 3.0. The non-metallic inclusions are mainly type B and type D non-metallic inclusions, and the inclusion grades are all 0.5. The strengthening mechanisms of the trial-produced Fe-Ni based superalloy HT700P seamless tube is mainly fine grain strengthening and second-phase precipitation strengthening, and the strength contribution caused by fine grain strengthening and second-phase precipitation strengthening accounts for about 30.7% and 66.9% of the total strengthening, respectively.

基金项目:
作者简介:
作者简介:李媛媛(1992-),女,硕士,工程师 E-mail:m15661492881@163.com 通信作者:秦瑞廷(1986-),男,硕士,高级工程师 E-mail:842810041@qq.com
参考文献:

 [1]王倩, 王卫良, 刘敏, . 超(超)临界燃煤发电技术发展与展望[J]. 热力发电, 2021, 50(2): 1-9.


 


Wang Q, Wang W L, Liu M, et al. Development and prospect of (ultra) supercritical coalfired power generation technology[J]. Thermal Power Generation, 2021, 50(2): 1-9.


 


[2]纪世东, 周荣灿, 王生鹏, . 700 ℃等级先进超超临界发电技术研发现状及国产化建议[J]. 热力发电, 2011, 40(7): 86-88.


 


Ji S D, Zhou R C, Wang S P, et al. Research and development status of advanced ultra supercritical power generation technology at 700 ℃ level and suggestions for localization[J]. Thermal Power Generation, 2011, 40(7): 86-88.


 


[3]刘入维, 肖平, 钟犁, . 700 ℃超超临界燃煤发电技术研究现状[J]. 热力发电, 2017, 46(9): 1-8.


 


Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultrasupercritical coalfired power generation technology[J]. Thermal Power Generation, 2017, 46(9): 1-8.


 


[4]张涛, 郝丽婷, 田峰, . 700 ℃超超临界火电机组用高温材料研究进展[J]. 机械工程材料, 2016, 40(2): 1-6.


 


Zhang T, Hao L T, Tian F, et al. Research progress on high temperature materials for 700 ℃ ultrasupercritical coalfired unit[J]. Materials for Mechanical Engineering, 2016, 40(2): 1-6.


 


[5]毛健雄. 700 ℃超超临界机组高温材料研发的最新进展[J]. 电力建设, 2013, 34(8): 69-76.


 


Mao J X. Latest development of hightemperature metallic materials in 700 ℃ ultrasupercritical units[J]. Electic Power Construction, 2013, 34(8): 69-76.


 


[6]王岩,李吉东,谷宇,.工业化生产N06625镍基合金板材组织性能[J].锻压技术,2024,49(3):47-51,93.


 


Wang YLi J DGu Yet al.Microstructure and properties on N06625 nickelbased alloy plate produced in industrialization [J]. Forging & Stamping Technology202449(3)47-5193.


 


[7]赵远, 岳庚新. 700 ℃超超临界火力发电机组高温压力管道用材研究进展[J]. 焊管, 2016, 39(9): 26-29.


 


Zhao Y, Yue G X. Research progress of high temperature pressure material used for 700 ℃ ultrasupercritical coalfired power unit[J]. Welded Pipe and Tube, 2016, 39(9): 26-29.


 


[8]杨成. 镍铁基高温合金GH2107组织热稳定性和力学性能的研究[D]. 沈阳:沈阳理工大学, 2016.


 


Yang C. The Research of the Thermal Stability and Mechanical Properties on the NiFe Base Superalloy GH2107[D]. ShenyangShenyang Ligong University,2016.


 


[9]袁勇,党莹樱,杨珍, . 700 ℃先进超超临界机组末级过热器用新型镍铁基高温合金的组织与性能[J].机械工程材料, 202044(1)44-50.


 


Yuan Y, Dang Y Y, Yang Z, et al. Microstructure and properties of NiFebased superalloy for 700 ℃ advanced ultra supercritical unit final superheater[J]. Materials For Mechanical Engineering, 2020,44(1)44-50.


 


[10]GB/T 2281—2021,金属材料拉伸试验第1部分:室温试验方法[S].


 


GB/T 2281—2021Metallic materials—Tensile testing—Prat 1Method of test at room temperature[S].


 


[11]GB/T 229—2020,金属材料夏比摆锤冲击试验方法[S].


 


GB/T 229—2020Metallic materials—Charpy pendulum impact test method[S].


 


[12]GB/T 2311—2018,金属材料布氏硬度试验第1部分:试验方法[S].


 


GB/T 2311—2018Metallic materials—Brinell hardness—Part 1Test method[S].


 


[13]GB/T 10561—2023, 钢中非金属夹杂物含量的测定 标准评级图显微检验法[S].


 


GB/T 10561—2023, Determination of content of nonmetallic inclusions in steel-Micrographic method using standard diagrams[S].


 


 


[14]张涛, 卫志刚, 田力男, . 700 ℃等级超超临界燃煤锅炉用金属材料应用分析[J]. 内蒙古电力技术, 2015, 33(5): 20-25.


 


Zhang T, Wei Z G, Tian L N, et al. Metal materials application analysis of 700 ℃ level advanced ultrasupercritical coalfired boiler[J]. Inner Mongolia Electric Power, 2015, 33(5): 20-25.


 


[15]GB/T 6394—2017,金属平均晶粒度测定方法[S].


 


GB/T 6394—2017Determination of estimating the average grain size of metal[S].


 


[16]Bhadeshia H. Models for the elementary mechanical properties of steel welds[J]. Bookinstitute of Materials, 1997, 650(1): 229-284.


 


[17]Hal E O. The deformation and ageing of mild steel:Ⅲ Discussion of results[J]. Physical Society Proceedings Section B, 1951, 64(6): 495-502.


 


[18]Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a CuCrAg alloy during thermalmechanical treatment[J]. Journal of Materials Research, 2017, 32(7): 1324-1332.


 


[19]Sun M X, Xu Y, Du W B. Influence of coiling temperature on microstructure, precipitation behaivors and mechanical properties of a low carbon Ti microalloyed steel[J]. Metals, 2020, 10(9): 1173.


 


 


 


[20]雍岐龙.钢铁结构材料中的第二相[M]. 北京:冶金工业出版社,2006.


 


Yong Q L. Secondary Phases in Steels[M]. BeijingMetallurgical Industry Press, 2006.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9