网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
金刚石六面顶压机铰链梁锻造工艺参数多目标优化
英文标题:Multi-objective optimization on forging process parameters for hinge beam of cubic-anvil high pressure apparatus for diamond
作者:王雪梅1 刘飞飞2 汪曙光3 王良文2 王若澜4 鲁海霞3 谢贵重2 
单位:1.郑州财经学院 智能工程学院 郑州市智能装配制造与物流优化重点实验室 河南 郑州 450000 2.郑州轻工业大学 机电工程学院 河南省复杂机械装备智能监测与控制国际联合实验室 河南 郑州 450002 3.河南黄河旋风股份有限公司 河南 长葛 461500 4.郑州轻工业大学 国际教育学院 河南 郑州 450002 
关键词:铰链梁 六面顶压机 终锻 极限学习机 灰色关联分析 改进粒子群算法 
分类号:TG316.3
出版年,卷(期):页码:2025,50(5):13-30
摘要:
为解决六面顶压机工作中铰链梁耳部容易出现裂纹断裂,以及铰链梁锻造成形过程中所需压机吨位过大等问题,以降低锻造过程中锻件损伤、成形载荷以及应力峰值等为目标,对铰链梁锻造工艺参数进行了优化。利用正交实验的极差和方差分析,获取各工艺参数对锻件损伤、成形载荷及锻件等效应力峰值的影响关系。通过灰色关联分析联合熵权法,将3个响应目标转化为对应的灰色关联度,并利用极限学习机建立工艺参数与灰色关联度的代理模型,开发了快速评判工艺参数优劣的工艺参数预测系统。最后,基于改进粒子群算法在可行域内寻优,得到最优工艺参数。相关理化分析结果显示:铰链梁成品截面的气孔夹杂、受力最大处的金相组织等符合要求。

In order to solve the problems of cracks and fracture easily appearing on the ears of hinge beams during the operation of cubic-anvil high pressure apparatus, and excessive tonnage of press required during the forging process of hinge beams, with the goal of reducing forging damage, forming load and stress peak during the forging process, the forging process parameters of hinge beam were optimized. The influences of each process parameter on forging damage, forming load and equivalent stress peak of forgings were obtained by using the range and variance analysis of orthogonal experiments, the three response objectives were converted into corresponding grey correlation degrees by combining grey correlation analysis with entropy weight method, and the agent model of process parameters and grey correlation degrees was established by extreme learning machine to develop a process parameter prediction system which could rapidly evaluate the advantages and disadvantages of the process parameters.Finally, based on the improved particle swarm algorithm within the feasible domain, the optimal process parameters were obtained. The results of relevant physical and chemical analysis show that the pore and inclusions in the finished cross-section of hinge beam and the microstructure at the maximum stress location meet the requirements. 

基金项目:
国家自然科学基金资助项目(52475289,52075500);河南省揭榜挂帅重大科技项目(211110220200);河南省科技攻关项目(252102220009, 232102221033);河南省重大科技专项(231111231200)
作者简介:
作者简介:王雪梅(1984-),女,学士,副教授,E-mail:15565050396@163.com ;通信作者:王良文(1963-),男,博士,教授,博士生导师,E-mail:w_liangwen@sina.com
参考文献:

[1]邹文俊.中国超硬材料与制品的发展与思考
[J].超硬材料工程,2016,28(2):45-49.

 

Zou W J. Development and reflection of China′s superhard materials and products
[J]. Superhard Material Engineering, 2016,28 (2): 45-49.

 


[2]罗锡裕,徐燕军,刘一波.中国人造金刚石的发展及其关键技术的进步
[J].粉末冶金工业,2016,26(1):1-13.

 

Luo X Y, Xu Y J,Liu Y B. The development and key technological improvement of synthetic diamond in China
[J]. Powder Metallurgy Industry,2016,26(1):1-13.

 


[3]王良文,刘飞飞,武玺旺,等.铰链梁锻造模具飞边槽参数及锻造工艺参数的优化方法
[P].中国:CN116227181A,2023-06-06.

 

Wang L W, Liu F F, Wu X W, et al. Optimization method of flash groove parameters and forging process parameters of hinge beam forging mold
[P]. 

China: CN116227181A, 2023-06-06.

 


[4]汪曙光,陈治强,武玺旺,等.一种六面顶压机铰链梁的成型模具
[P]. 中国:CN215392284U,2022-01-04.

 

Wang S G, Chen Z Q, Wu X W, et al. A forming mold for the hinge beam of the hexahedral top diamond press
[P]. China: CN215392284U, 2022-01-04.

 


[5]刘金豪,沈国劬,孙嫘,等.铰链梁锻件的锻造工艺开发与批量化生产
[J].大型铸锻件,2020(2):11-13.

 

Liu J H, Shen G Q, Sun L,et al. Forging process development and mass production of hinge beam forgings
[J]. Heavy Casting and Forging, 2020(2):11-13.

 


[6]Xie G Z, Zhang S X, Wang L W, et al. Lightweight design of hinge beam based on Kriging agent model
[J]. Journal of Mechanical Science and Technology, 2022, 36(7): 3585-3595.

 


[7]Jia Y Y, Peng H M, Cao H J, et al. Parameter optimization in hot precision forging process of synchronizer ring based on grey relational analysis and response surface method
[J]. Materials Research Express, 2022, 9(4): 046517.

 


[8]Ji H C, Song G, Huang X M, et al. Precision hot forging forming experiment and numerical simulation of a railway wagon bogie adapter
[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1): 907-925.

 


[9]Obiko J O, Mwema F M, Shangwira H. Forging optimisation process using numerical simulation and Taguchi method
[J]. SN Applied sciences, 2020,2:713.

 


[10]Noorbakhsh M, Moradi H R. Design and optimization of multi-stage manufacturing process of stirling engine crankshaft
[J]. SN Applied Sciences, 2020,2:65.

 


[11]郭静,李明星.基于Deform-3D的汽车差速器壳体模锻工艺改进
[J].锻压技术,2023,48(4):38-47.

 

Guo J, Li M X. Improvement on die forging process for automobile differential housing based on Deform-3D
[J]. Forging & Stamping Technology, 2023,48(4):38-47.

 


[12]齐羿,薛喜云,焦斐,等.盘式转向节锻造工艺优化与过程模拟分析
[J].锻压技术,2023,48(9):32-40.

 

Qi Y, Xue X Y, Jiao F, et al. Forging process optimization and process simulation analysis on disc steering knuckle
[J]. Forging & Stamping Technology,2023,48(9):32-40.

 


[13]蔺永诚,陈明松.高性能大锻件控形控性理论及应用
[M].北京: 中国科技出版传媒股份有限公司,2013.

 

Lin Y C, Chen M S. Theory and Application of Shape Control of High-performance Large Forgings
[M].Beijing: China Science Publishing & Media Ltd., 2013.

 


[14]王岩,隋思涟.实验设计与MATLAB数据分析
[M].北京:清华大学出版社, 2012.

 

Wang Y,Sui S L. Experimental Design and MATLAB Data Analysis
[M]. Beijing: Tsinghua University Press, 2012.

 


[15]杜炎. 基于组合代理模型的某电动汽车车身多学科优化设计研究
[D].南昌:南昌大学, 2022.

 

Du Y. Research on Multidisciplinary Optimal Design of An Electric Vehicle Body Based on Combined Agent Model
[D]. Nanchang:Nanchang University, 2022.

 


[16]丁世林,黄海松,康佩栋,等.基于灰色关联分析的7050铝合金轮毂锻造工艺优化
[J].铸造技术,2018,39(5):1045-1049.

 

Ding S L, Huang H S, Kang P D, et al. Optimization of forging process of 7050 aluminum alloy wheel based on gray corre-lation analysis
[J]. Foundry Technology,2018,39(5):1045-1049.

 


[17]Ding S F, Xu X Z, Nie R. Extreme learning machine and its applications
[J]. Neural Computing and Applications, 2014, 25: 549-556.

 


[18]石青松, 徐红玉, 王晓强, 等. 基于 AMGA 与 IPSO 算法的 42CrMo 超声滚挤压工艺参数优化
[J]. 塑性工程学报, 2024, 31 (6):67-75. 

 

Shi Q S, Xu H Y, Wang X Q, et al. Optimization of 42CrMo ultrasonic rolling extrusion process parameters based on AMGA and IPSO algorithm
[J]. Journal of Plasticity Engineering, 2024, 31 (6): 67-75.

 


[19]GB/T 10561—2023,钢中非金属夹杂物含量的测定标准评级图显微检验法
[S].

 

GB/T 10561—2023,Determination of content of nonmetallic inclusions in steel—Micrographic method using standard diagrams
[S].
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9