网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热轧高强钢上副车架冲压成形工艺
英文标题:Stamping process of upper subframe for hot-rolled high-strength steel
作者:岳峰丽1 闫晓琦1 邓偲瀛2 陈维晋2 陈帅峰2 宋鸿武2 
单位:1. 沈阳理工大学 汽车与交通学院 辽宁 沈阳 110159 2. 中国科学院金属研究所 师昌绪先进材料创新中心 辽宁 沈阳 110016 
关键词:热轧高强钢 冲压工艺 力学性能 微观组织 成形性能 
分类号:TG306
出版年,卷(期):页码:2025,50(5):79-89
摘要:

为解决某车型上副车架零件在试模阶段出现开裂、减薄的问题,通过拉伸试验、EBSD试验以及Nakazima试验对热轧高强钢QStE420TM的力学性能、微观组织及成形性能进行测试。结果显示,热轧高强钢在轧制方向上的抗拉强度为577 MPa,屈强比为0.83,伸长率为26.4%。此外,为明确材料的各向异性计算了不同方向拉伸后的加工硬化指数n和各向异性系数r。对热轧高强钢上副车架零件的冲压成形工艺进行了模拟计算,结果表明:原生产件破裂的原因为预冲孔的设置使孔的边缘处发生应力集中而产生开裂。取消预冲孔后,通过对一序模面进行适当调整,增大凹模圆角半径并增加一序工艺的预成形深度,可降低二序工艺的局部变形量,使得最终零件的最大减薄率由27.5%降至19%,减少了零件冲压破裂的风险。

In order to solve the problems of cracking and thinning of upper subframe parts on a certain vehicle during the die trial stage, the mechanical properties, microstructure and formability of hot-rolled high-strength steel QStE420TM were tested by tensile test, electron backscattered diffraction (EBSD) test and Nakazima test, respectively. The results show that the tensile strength of hot-rolled high-strength steel in the rolling direction is 577 MPa, the yield ratio is 0.83 and the elongation is 26.4%. In addition, in order to clarify the anisotropy of the material, work hardening index n and coefficient of anisotropy r after stretching in different directions are calculated. The stamping process of upper subframe parts for hot-rolled high-strength steel QStE420TM is simulated and calculated. The simulation results show that the reason for the cracking of the original produced parts is that the setting of pre-punched hole causes stress concentration at the edge of hole which leads to cracking. Therefore, after canceling the pre-punched hole, the local deformation amount of the second-station process can be reduced by appropriately adjusting the first-station die surface, increasing the radius of die fillet and the pre-forming depth of the first-station process, so that the maximum thinning rate of the final part is reduced from 27.5% to 19%, reducing the risk of stamping cracking of parts.

基金项目:
国家自然科学基金资助项目(52105413)
作者简介:
作者简介:岳峰丽(1970-),女,硕士,副教授,E-mail:flyue@163.com;通信作者:邓偲瀛(1987-),女,博士,副研究员,E-mail:sydeng@imr.ac.cn
参考文献:

[1]鲁安平,李守华,宋志超,等.汽车用镀锌低合金高强钢HX550LAD+Z的研制与开发
[J].轧钢,2023, 40(3):47-52.

 

Lu A P, Li S H, Song Z C, et al. Research and development of galvanized low alloy high strength steel HX550LAD+Z for automobile
[J]. Steel Rolling, 2023, 40(3): 47-52.

 


[2]冯毅,万鑫铭,周佳,等.汽车用先进高强钢板材断裂性能研究进展
[J].汽车工程学报,2023, 13(3):273-297.

 

Feng Y, Wan X M, Zhou J, et al. Research progress on fracture properties of advanced high-strength steel sheet for automobiles
[J]. Chinese Journal of Automotive Engineering, 2023,13(3):273-297.

 


[3]夏元峰.变厚度汽车B柱冲压成形工艺研究及模具设计
[D].哈尔滨:哈尔滨工业大学,2013.

 

Xia Y F. Research on Stamping Process and Mold Design of B-pillar with Variable Thickness
[D]. Harbin:Harbin Institute of Technology,2013.

 


[4]袁国,利成宁,孙丹丹,等.热轧双相钢的发展现状及高强热轧双相钢的开发
[J].中国工程科学,2014, 16(2):39-45.

 

Yuan G, Li C N, Sun D D, et al. Development status of hot rolled dual-phase steel and development of high strength hot rolled dual-phase steel
[J]. Strategic Study of CAE,2014, 16(2):39-45.

 


[5]王存宇,杨洁,常颖,等.先进高强度汽车钢的发展趋势与挑战
[J].钢铁,2019,54(2):1-6.

 

Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels
[J]. Iron and Steel, 2019,54(2): 1-6.

 


[6]李军正.重型卡车保险杠设计及开裂问题改进
[D].西安:长安大学,2017.

 

Li J Z. Design and Cracking Improvement of Heavy Duty Truck′s Bumper
[D]. Xi′an:Chang′an University, 2017.

 


[7]Rodionova I G, Amezhnov A V, Shaposhnikov N G, et al. Features of the effect of microstructure characteristics on corrosion resistance of cold-rolled high-strength low-alloy steels (HSLA) grade 260-300 for automobile building
[J]. Metallurgist, 2020, 63(9): 920-932.

 


[8]赵欣.国内外汽车用钢的技术进展及EVI销售新模式
[J].汽车工艺师,2021(3):14-18.

 

Zhao X. Development of automotive steel at home and abroad and new sales model of EVI
[J]. Auto Manufacturing Engineer, 2021(3):14-18.

 


[9]朱晓东,薛鹏,李伟.宝钢冷轧马氏体钢板的研发现状和应用
[J].宝钢技术,2017(5):1-8.

 

Zhu X D, Xue P, Li W. Status of the development and application of Baosteel′s cold rolled martensitic steel sheets
[J]. Baosteel Technology, 2017(5):1-8.

 


[10]刘永前,彭涛,李立军,等.武钢汽车用热轧低合金高强钢的研发进展
[J].武钢技术,2015,53 (3):59-62.

 

Liu Y Q, Peng T, Li L J, et al. Research and development of hot rolling low alloy high strength automotive steel in WISCO
[J]. Wisco Technology,2015,53(3):59-62.

 


[11]朱阳林,岳重祥,李慧,等.汽车结构用热轧酸洗板QStE420的开发
[J].金属热处理,2018,43(10):50-53.

 

Zhu Y L, Yue C X, Li H, et al. Development of hot rolled and pickled automotive steel QStE420
[J]. Heat Treatment of Metals, 2018,43(10):50-53.

 


[12]王国栋.以超快速冷却为核心的新一代TMCP技术
[J].上海金属,2008(2):1-5.

 

Wang G D. The new generation TMCP with the key technology of ultra fast cooling
[J]. Shanghai Metals, 2008(2):1-5.

 


[13]王文澜.基于短流程汽车板的汽车轻量化与节能减排
[J].科技创新与应用,2017(5):140.

 

 

Wang W L. Automotive lightweight, energy saving and emission reduction based on short-process automotive panel
[J]. Technology Innovation and Application,2017(5):140.

 


[14]Shuto H,Ito Y,Maeda D, et al. Development of high strength steels with high press formability and fatigue property
[A].IOP Conference Series: Materials Science and Engineering
[C]. Bristol:IOP Publishing, 2018.

 

 

 


[15]日本制铁1180 MPa级热轧高强钢首次应用于日本中重型卡车
[J].鞍钢技术,2022(4):36.

 

Nippon Steel 1180 MPa class hot rolled high strength steel was first applied to medium and heavy duty trucks in Japan
[J]. Angang Technology,2022(4):36.

 


[16]范宣锋.专用车轻量化设计分析及高强度钢板的应用
[J].汽车与驾驶维修(维修版),2018(8):149,151.

 

Fan X F. Lightweight design analysis of special vehicle and application of high strength steel plate
[J]. Auto Driving & Service,2018(8):149,151.

 


[17]Mukherjee M, Tiwari S, Bhattacharya B. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels
[J]. International Journal of Minerals Metallurgy and Materials, 2018,25(2):199-215.

 


[18]胡华东.汽车用低合金高强钢H300LAD+Z产品开发
[J].金属世界,2018(3):72-76.

 

Hu H D. Development of low alloy high strength steel H300LAD+Z product for automobile
[J]. Metal World, 2018(3):72-76.

 


[19]闫华军,邢博,张双杰,等.基于Dynaform的前防撞梁回弹分析及模具补偿研究
[J].塑性工程学报,2023,30(8): 35-41.

 

Yan H J, Xing B, Zhang S J, et al. Study on springback analysis and die compensation of front anti-collision beam based on Dynaform
[J]. Journal of Plasticity Engineering, 2023,30(8):35-41.

 


[20]桂良进,张晓前,周驰,等.各向异性高强钢成形极限曲线有限元预测
[J].清华大学学报(自然科学版),2019, 59(1):66-72.

 

Gui L J, Zhang X Q, Zhou C, et al. Finite element prediction of the forming limit curve for anisotropic high-strength steel
[J]. Journal of Tsinghua University(Science and Technology), 2019,59 (1): 66-72.

 


[21]乐起,王玮珉,胡志力,等.某高强钢汽车控制臂冲压成形工艺研究
[J].塑性工程学报,2023, 30 (12):47-54.

 

Le Q, Wang W M, Hu Z L, et al. Research on stamping process of a high strength steel automobile spring arm
[J]. Journal of Plasticity Engineering, 2023,30(12):47-54.

 


[22]肖亚航,雷改丽,傅敏士.材料成形计算机模拟的研究现状及展望
[J].材料导报,2005(6):13-16.

 

Xiao Y H, Lei G L, Fu M S. Present status and prospects for computer simulation of material forming technology
[J]. Materials Reports,2005(6):13-16.

 


[23]孔加维,苏振军,曹晓恩,等.汽车结构钢QSTE420TM冲压开裂分析及控制措施
[J].四川冶金,2022,44(4):44-47.

 

Kong J W, Su Z J, Cao X E, et al. Analysis andcontrol measures of stamping cracking of automobile structural steel QSTE420TM
[J]. Sichuan Metallurgy, 2022,44 (4): 44-47.

 


[24]陈维晋,殷胜,裴新华.580DP与700DP热轧双相钢的力学性能与成形性能
[J].机械工程材料,2020, 44(7):92-97.

 

Chen W J, Yin S, Pei X H. Mechanical property and formability of 580DP and 700DP hot-rolled dual phase steel
[J]. Materials For Mechanical Engineering, 2020, 44(7):92-97.

 


[25]GB/T 15825.4—2008,金属薄板成形性能与试验方法第4部分:扩孔试验
[S].

 

GB/T 15825.4—2008,Sheet metal formability and test method—Part 4: Method of hole expanding test
[S].

 


[26]Ray R K, Jonas J J. Transformation textures in steels
[J]. International Materials Reviews, 1990, 35(1): 1-36.

 


[27]Han S H, Choi S H, Choi J K, et al. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels
[J]. Materials Science and Engineering: A, 2010, 527(7-8): 1686-1694.

 


[28]Tian Y, Wang H T, Ye Q B, et al. Effect of rolling reduction below γ non-recrystallization temperature on pancaked γ, microstructure, texture and low-temperature toughness for hot rolled steel
[J]. Materials Science Engineering A, 2020,794: 139640.

 


[29]吕庆功,陈光南,周家琮,等.热轧钢板的织构
[J].钢铁钒钛,2001,22(2):1-8.

 

Lyu Q G, Chen G N, Zhou J C, et al. Textures in hot rolled steel sheet
[J]. Iron Steel Vanadium Titanium, 2001,22(2):1-8.

 


[30]祝洪川,王有禄,魏星,等.高强低合金钢成形极限曲线的计算
[J].钢铁研究,2017,45(6):63-66.

 

Zhu H C, Wang Y L, Wei X, et al. Calculation of FLC for high-strength low alloy steel
[J]. Research on Iron and Steel, 2017, 45(6):63-66.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9