[1]黄毅宏,黎厚芳,简智彪. 精冲工艺及其机理探讨 [J]. 中国机械工程, 1994, 5(5):57-59.
Huang Y H, Li H F, Jian Z B. A study on the fine blanking process and its mechanism [J]. China Mechanical Engineering, 1994, 5(5):57-59.
[2]黄涛. 精冲分离过程的数值模拟与质量控制 [D]. 武汉: 武汉理工大学, 2006.
Huang T. Numerical Simulation and Quality Control to Fine Blanking Processes [D]. Wuhan:Wuhan University of Technology, 2006.
[3]关欣,沈伟财,向华,等. 精冲钢半冲特征连接强度实验研究 [J].锻压技术,2023,48(8):66-71,124.
Guan X,Shen W C,Xiang H,et al. Experimental investigation on connection strength of half-blanking feature for fine-blanking steel [J]. Forging & Stamping Technology,2023,48(8):66-71,124.
[4]Yoon J I, Jung J, Joo S H, et al. Correlation between fracture toughness and stretch-flangeability of advanced high strength steels [J]. Materials Letters, 2016,180: 322-326.
[5]李涛,韩龙帅,郑学斌,等. 高强钢边部开裂影响因素研究 [J]. 塑性工程学报, 2017, 24(4):173-177.
Li T,Han L S,Zheng X B,et al.Influence of factors on edge crack of high strength steel [J]. Journal of Plasticity Engineering,2017,24 (4): 173-177.
[6]郑欢, 吴彦骏, 刁可山, 等. 边部冲裁对双相钢拉伸性能影响的实验研究 [J]. 上海交通大学学报, 2014, 48(3):405-411.
Zheng H, Wu Y J, Diao K S, et al. Experimental investigation of the influence of sheared edge on tensile properties of dual phase steel [J]. Journal of Shanghai Jiaotong University,2014,48(3):405-411.
[7]李永好. 多种超高强度钢板冲裁质量评估及边缘成形性能的比较研究 [D]. 上海: 上海交通大学, 2019.
Li Y H. Research on the Evaluation of Shearing Edge Quality and Edge Formability for Various Ultra High Strength Steels [D]. Shanghai: Journal of Shanghai Jiaotong University, 2019.
[8]周明. 剪切边质量对高强钢拉伸性能与断裂模式影响的实验研究 [D]. 上海: 上海交通大学, 2018.
Zhou M. Experimental Investigation on the Influence of Edge Quality on Tensile Property and Fracture Modes of High Strength Steel [D]. Shanghai: Journal of Shanghai Jiaotong University, 2018.
[9]Dykeman J, Malcolm S, Yan B, et al. Characterization of Edge fracture in various types of advanced high strength steel [R]. SAE Technical Paper, 2011.
[10]王雪听,牛超. 基于半球凸模试验的高强钢边部成形性敏感度分析 [J]. 模具工业, 2021, 47(3):61-65.
Wang X T, Niu C. Analysis on high-strength steel edge forming sensitivity based on hemispherical punch test [J]. Die & Mould Industry, 2021, 47(3):61-65.
[11]Chang Y, Han S, Li X D, et al. Effects of different cutting processes on characteristics of cut damage for the third-generation automobile medium-Mn steel [J]. Steel Research International, 2018, 89(9): 1700375.
[12]Levy B S, Gibbs M, Van Tyne C J. Failure during sheared edge stretching of dual-phase steels [J]. Metallurgical and Materials Transactions A, 2013, 44:3635-3648.
[13]Cho W, Jeong B S, Jeong K, et al. New approach to hole-expansion ratio in complex phase and martensitic steels: Understanding the role of punching damage [J]. Journal of Materials Research and Technology, 2023, 26:837-849.
[14]龚宇, Hua M, Uusitalo J, 等. 改善高强双相钢冲裁边部成形性能 [J]. 钢铁钒钛, 2016, 37(4):143-151.
Gong Y, Hua M, Uusitalo J, et al. Improving the sheared-edge formability of high strength dual-phase steel [J]. Iron Steel Vanadium Titanium, 2016, 37(4): 143-151.
[15]Hofmann H, Mattissen D, Schaumann T W. Advanced cold rolled steels for automotive applications [J]. Steel Research International, 2009, 80(1):22-28.
[16]Lesch C, Kwiaton N, Klose F B. Advanced high strength steels (AHSS) for automotive applications-tailored properties by smart microstructural adjustments [J]. Steel Research International, 2017, 88(10):1700210.
[17]GB/T 24524—2021, 金属材料薄板和薄带扩孔试验方法 [S].
GB/T 24524—2021, Metallic materials—Sheet and strip—Hole expanding test [S].
[18]李亚,牛超,连昌伟.切边工艺对高强钢成形性能与断裂模式影响的实验研究 [J].锻压技术,2024,49(6):110-115.
Li Y,Niu C,Lian C W. Experimental study on influence of cutting process on formability and fracture mode for high strength steel [J]. Forging & Stamping Technology,2024,49(6):110-115.
[19]Mahalle G, Kotkunde N, Gupta A K, et al. An improved M-K model coupled with different ductile criteria for fracture limit predictions of Inconel 718 alloy [J]. Journal of Materials Research and Technology, 2021, 11:1162-1174.
[20]Zi Y, Guo Q, Zheng Z X, et al. Study on formation of exit edge defects in the milling process by using the combined theory of the energy conservation and orthogonal cutting mechanism [J]. Precision Engineering, 2024, 89:135-149.
|