网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
航空铝合金板材超低温条件下的力学性能
英文标题:Mechanical properties of aerospace aluminum alloy sheet at cryogenic temperature
作者:张坤 张皓 陶哲瑞 韩颖杰 
单位:中航工业沈阳飞机工业(集团)有限公司 辽宁 沈阳 110850 
关键词:铝合金板材 超低温 力学性能 伸长率 强度 
分类号:TG115.5
出版年,卷(期):页码:2025,50(5):129-135
摘要:

设计了可用于超低温单向拉伸的试样,测试了常用航空铝合金板材在超低温条件下(液氮,-196 ℃)的力学性能,并从伸长率、强度及加工硬化率等方面与室温力学性能进行对比分析。结果表明:超低温条件可以大幅提升退火态或固溶态航空铝合金板材的伸长率、强度及加工硬化率,可将超低温条件引入退火态和固溶态铝合金板材的成形工艺中,以显著改善其成形性能;时效态铝合金板材在超低温条件下的强度大幅提升,而加工硬化率提升不明显,伸长率提升较少甚至降低,不宜将超低温条件引入时效态铝合金板材的成形工艺中。超低温条件可消除铝合金板材的锯齿流变现象,材料流动应力的稳定性明显提高。研究结果为超低温成形技术的应用提供方向性指导和工艺参数设计优化的依据。

The specimens that can be used for uniaxial tensile at ultra-low temperature were designed, and the mechanical properties of common aerospace aluminum alloy sheet under cryogenic temperature condition (liquid nitrogen, -196 ℃) were tested,which were compared and analyzed with those at room temperature in terms of elongation, strength and work hardening rate. The results show that the elongation, strength and work hardening rate of annealed and solution-treated aerospace aluminum alloy sheet can be significantly improved under cryogenic temperature condition. Therefore,the cryogenic temperature condition could be introduced into the forming process of annealed and solution state aluminum alloy sheet to significantly improve their formability. For aged aluminum alloy sheet, the strength is greatly improved at cryogenic temperature condition, while the work hardening rate is not significantly improved, and the elongation is improved less or even reduced. Therefore, it is not advisable to introduce the ultra-low temperature condition into the forming process of aged aluminum alloy sheet. Cryogenic temperature condition can eliminate the serrated rheological phenomenon of aluminum alloy sheet so as to improve the stability of material rheological stress significantly. Thus, the research results provide directional guidance for the application of cryogenic temperature forming technology and a basis for the optimization of process parameter design.

基金项目:
装备预先研究共用技术项目(50923040302)
作者简介:
作者简介:张坤(1990-),男,博士,高级工程师,E-mail:zhangk223@avic.com
参考文献:


[1]Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry
[J]. Journal of Materials Research and Technology, 2023, 27: 944-983.


 


[2]Zheng K L, Politis D J, Wang L L, et al. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components
[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 55-80.

 


[3]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components
[J]. International Journal of Extreme Manufacturing, 2019, 1: 1-18.

 


[4]王晨光. 2024铝合金双曲度蒙皮超低温拉深成形工艺研究
[D]. 长沙: 中南大学, 2021.

 

Wang C G. Research on Ultra-low Temperature Deep Drawing Process of 2024 Aluminum Alloy Hyperbolic Thin-walled Skin Part
[D]. Changsha: Central South University, 2021.

 


[5]Yuan S J, Qi J, He Z B. An experimental investigation into the formability of hydroforming 5A02 Al-tubes at elevated temperature
[J]. Journal of Materials Processing Technology, 2006, 177: 680-683.

 


[6]Hong J H, Yoo D H, Kwon Y N, et al. Evaluation of rate-dependent forming limit for AA7075 sheets under pneumatic stretching method at elevated temperatures
[J]. Journal of Materials Research and Technology, 2023, 22: 1839-1854.

 


[7]Fan X B, He Z B, Yuan S J. Deformation behavior of 5A06 aluminum alloy sheet for rapid gas forming at elevated temperature
[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 389-394.

 


[8]冯贞伟,蒋少松,康良炜. 航空领域用5A90铝锂合金高温变形性能及组织变化规律
[J].锻压技术,2024,49(9):186-194.

 

Feng Z W,Jiang S S,Kang L W.High temperature deformation properties and microstructure variation law of 5A90 Al-Li alloy used in aviation field
[J]. Forging & Stamping Technology,2024,49(9):186-194.

 


[9]涂振杰. 铝合金钣金件淬火变形分析与控制
[J]. 金属热处理,1994,19(2):47-50.

 

Tu Z J. Analysis and control of quenching deformation of aluminum alloy plate parts
[J]. Heat Treatment of Metals, 1994, 19(2):47-50.

 


[10]邓涛, 靳舜尧, 刘乐. 2024 铝合金薄壁板材淬火过程建模仿真
[J]. 塑性工程学报,2021,28(9):207-216.

 

Deng T, Jin S Y, Liu L. Simulation of quenching process of 2024 aluminum alloy thin-walled sheet
[J]. Journal of Plasticity Engineering, 2021, 28(9): 207-216.

 


[11]束飞,拓建峰,张宇岑,等.飞机铝合金深锥型面零件多道次充液拉深技术
[J].精密成形工程,2016,8(5): 96-102.

 


Shu F, Tuo J F, Zhang Y C, et al. Multi-step hydrodynamic deep drawing of aluminium alloy conical part with deep cavity
[J]. Journal of Netshape Forming Engineering, 2016, 8(5): 96-102.

 


[12]刘晓滕,赵佳蕾,孙有政,等.中间退火对Al-Mg-Si系铝合金汽车板组织和性能的影响
[J]. 金属热处理,2020,45(10): 119-124.

 

Liu X T, Zhao J L, Sun Y Z, et al. Effect of intermediate annealing on microstructure and properties of Al-Mg-Si series aluminum alloy automobile sheet
[J]. Heat Treatment of Metals, 2020, 45(10): 119-124.

 


[13]Cheng W J,Liu W,Yuan S J.Deformation behavior of Al-Cu-Mn alloy sheets under biaxial stress at cryogenic temperatures
[J]. Materials Science and Engineering: A, 2019, 759: 357-367.

 


[14]Feng B, Gu B, Li S H.An efficient pre-hardened cryogenic forming process for AA7075 aluminum alloy sheets
[J]. Journal of Manufacturing Processes, 2023, 92: 534-547.

 


[15]Fan X B, Yuan S J. Innovation for forming aluminum alloy thin shells at ultra-low temperature by the dual enhancement effect
[J]. International Journal of Extreme Manufacturing, 2022, 4: 033001.

 


[16]凡晓波,刘洋,邬方兴,等.2219铝合金差厚球壳梯度超低温拉深成形规律
[J]. 锻压技术,2023,48(5): 155-161.

 

Fan X B, Liu Y, Wu F X, et al. Gradient ultra-low temperature deep drawing law of 2219 aluminum alloy spherical shell with differential thickness
[J]. Forging & Stamping Technology, 2023, 48(5): 155-161.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9