[1]张倩, 周红霞. 太钢“手撕钢”: 打造中国创造新标杆 [J]. 前进, 2022(7): 40-42.
Zhang Q, Zhou H X. TISCO′s “hand-torn steel”: Creating a new benchmark for China′s creativity [J]. Advance, 2022(7): 40-42.
[2]张希杰,余斌,刘羽飞,等.轧制及退火工艺对C5100铜带材组织性能的影响 [J].铜业工程,2023(2):114-121.
Zhang X J, Yu B, Liu Y F, et al. Microstructure and properties of C5100 copper strip with different rolling and annealing processes [J]. Copper Engineering, 2023(2): 114-121.
[3]Wojciech P. Crystal plasticity [J]. Crystals, 2021,11(1): 44.
[4]章海明, 徐帅, 李倩, 等. 晶体塑性理论及模拟研究进展 [J]. 塑性工程学报, 2020,27(5): 12-32.
Zhang H M, Xu S, Li Q, et al. Progress of crystal plasticity theory and simulations [J]. Journal of Plasticity Engineering, 2020,27(5): 12-32.
[5]Taylor G I. The mechanism of plastic deformation of crystals. Part I. Theoretical [J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1934,145(855): 362-387.
[6]Schmid E. Yield point of a crystals, critical shear stress law [A]. Proceedings of the First International Congress for Applied Mechanics [C]. Delft, 1924.
[7]Hill R J, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972,20(6): 401-413.
[8]Peirce D, Asaro R J. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982,30(6): 1087-1119.
[9]Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metallurgica, 1976,31(12): 1951-1976.
[10]Rice J R. Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity [J]. Jouranl of the Mechanics and Physics of Solids, 1971,19(6): 433-455.
[11]刘相华, 赵启林, 孙祥坤, 等. 极薄带微轧制技术研究与应用新进展 [J]. 轧钢, 2018,35(1): 1-5.
Liu X H, Zhao Q L, Sun X K, et al. Prospect of micro rolling technologies for foil products [J]. Steel Rolling, 2018,35(1): 1-5.
[12]陈守东. 基于晶体塑性有限元的铜极薄带轧制过程模拟研究 [D]. 沈阳: 东北大学, 2016.
Chen S D. Simulation Study of Rolling Process of Copper Very Thin Strip Based on Crystal Plasticity Finite Element [D]. Shenyang: Northeastern University, 2016.
[13]Si L Y, Lu C, Liu X H, et al. Modeling of heterogeneous tensile deformation of polycrystalline aluminum [J]. Steel Research International, 2008,79(2):677-683.
[14]刘相华, 赵启林, 陈守东. 极薄带轧制过程的晶体塑性有限元分析 [J]. 轧钢, 2018,35(5):1-5.
Liu X H, Zhao Q L, Chen S D. Foil rolling process analyzed by crystal plasticity finite element method [J]. Steel Rolling, 2018,35(5):1-5.
[15]朱远志, 张雅峰, 王适之, 等. 不锈钢箔材的轧制 [A]. 2014年全国钢材深加工研讨会论文集 [C]. 北京,2014.
Zhu Y Z, Zhang Y F, Wang S Z, et al. Rolling of stainless steel foils [A]. Proceedings of the 2014 National Symposium on Deep Steel Processing [C]. Beijing,2014.
[16]王天翔, 高祥明, 赵永顺, 等. 张力作用下304不锈钢箔材的轧制变形模拟 [J]. 塑性工程学报, 2021,28(3):164-170.
Wang T X, Gao X M, Zhao Y S, et al. Simulation on rolling deformation of 304 stainless steel foil under tension [J].Journal of Plasticity Engineering, 2021,28(3):164-170.
[17]刘秀, 金霞, 楼航飞, 等. 304不锈钢箔材在不同应变速率下的拉伸性能研究 [J]. 材料科学与工艺, 2019,27(5):59-65.
Liu X, Jin X, Lou H F, et al. Studies on the tensile properties of 304 stainless steel foil at different strain rates [J]. Materials Science and Technology, 2019,27(5):59-65.
[18]朱远志, 范伟龙, 刘冉, 等. 金属箔材轧制过程中第二相颗粒的尺寸效应研究 [J]. 华中师范大学学报(自然科学版), 2017,51(6):791-795.
Zhu Y Z, Fan W L, Liu R, et al. The size effect of different types of secondary particles in metallic foils during its foil rolling process [J]. Journal of Central China Normal University(Natural Sciences), 2017,51(6):791-795.
[19]李明星. SUS304不锈钢箔微冲裁尺寸效应研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.
Li M X. Study of Dimensional Effects of Microblanking on SUS304 Stainless Steel Foils [D]. Harbin: Harbin Institute of Technology, 2011.
[20]Lee E H. Elastic-plastic deformation at finite strains [J]. Journal of Applied Mechanics, 1969, 36(1): 1-6.
[21]Lu J, Becker A, Sun W, et al. Simulation of cyclic plastic behavior of 304L steel using the crystal plasticity finite element method [J]. Procedia Materials Science, 2014, 3: 135-140.
[22]Le Pécheur A, Curtit F, Clavel M, et al. Polycrystal modelling of fatigue: Pre-hardening and surface roughness effects on damage initiation for 304L stainless steel [J]. International Journal of Fatigue, 2012, 45: 48-60.
[23]范婉婉. 304不锈钢极薄带轧制变形区细观力学行为研究 [D]. 太原: 太原理工大学, 2020.
Fan W W. 304 Stainless Steel Very Thin Strip Rolling Deformation Zone Fine Mechanical Behavior Research [D]. Taiyuan: Taiyuan University of Technology, 2020.
|