网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同晶粒取向的304不锈钢箔带介观尺度轧制变形
英文标题:Mesoscale rolling deformation of 304 stainless steel foil with different grain orientations
作者:杨亚玉1 2 3 范婉婉1 2 3 刘红艳1 2 3 王炳超1 2 3 王涛1 2 3 和东平1 2 3 
单位:1. 太原理工大学 机械工程学院 山西 太原 030024 2. 太原理工大学 先进金属复合材料成形技术与装备教育部工程研究中心 山西 太原 030024 3. 太原理工大学 金属成形技术与重型装备全国重点实验室 山西 太原 030024 
关键词:304不锈钢箔带 织构取向 介观尺度 轧制变形 位错滑移 晶体塑性有限元 
分类号:TG33
出版年,卷(期):页码:2025,50(5):188-196
摘要:

采用晶体塑性有限元方法建立了304不锈钢箔带轧制有限元模型,对比实测轧后箔带晶粒取向与模拟结果,验证了轧制模型的准确性。基于上述模型分析了5种典型织构取向和随机取向对轧制304不锈钢箔带的轧制力、接触压力、微观不均匀变形以及滑移系运动状态的影响。结果表明,晶粒取向显著影响模型轧制过程的接触压力和轧制力。不同晶粒取向的模型在轧制变形中受前后张力的影响不同。Brass、Cube和Goss取向占优模型在适当的前后张力作用下,可提前发生一定的塑性变形,降低轧制变形所需的轧制力。随机取向模型的各向异性显著,其不均匀的位错滑移容易导致箔带表面产生局部化现象。典型织构取向模型的剪切带数量多,位错滑移变形分布较为均匀,轧制成形产品的表面质量更好。

The rolling finite element model of 304 stainless steel foil was established by crystal plasticity finite element method. The accuracy of the rolling model was verified by comparing the measured grain orientation of foil with the simulation results. Based on the above model, the effects of five typical texture orientations and random orientation on the rolling force, contact pressure, micro-uneven deformation and motion state of slip system for rolled 304 stainless steel foil were analyzed. The results show that the contact pressure and rolling force in the model rolling process of the are significantly affected by the grain orientation. The effects of front and back tension in the rolling deformation for the models with different grain orientations are different. The models dominated by Brass, Cube and Goss orientations  can produce a certain plastic deformation in advance and reduce the rolling force required for rolling deformation under the action of appropriate front and back tension. The anisotropy of the random orientation model is significant, and its uneven dislocation slip can easily lead to localization phenomenon at the surface of foil. In contrast, the typical texture orientation models have more shear bands and a more uniform dislocation slip deformation distribution, resulting in better surface quality of the rolled product.

基金项目:
国家自然科学基金区域联合重点项目(U22A20188);国家杰出青年基金项目(52425504);金属成形技术与重型装备全国重点实验室开放课题(B2408100.W13);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2024HA-TYUTKFYF011)
作者简介:
作者简介:杨亚玉(2000-),女,硕士研究生,E-mail:yangyayu2025@163.com;通信作者:范婉婉(1995-),女,博士,讲师,E-mail:fanwanwan@tyut.edu.cn
参考文献:


[1]严子力. 晶体取向及取向差对高温镍基合金疲劳行为的晶体塑性模拟研究
[D]. 南昌: 南昌大学, 2024.


 

Yan Z L. Crystal Plasticity Simulation Study on the Influence of Crystal Orientation and Misorientation on Fatigue Behavior of High-temperature Nickel-based Alloys
[D]. Nanchang: Nanchang University, 2024.

 


[2]Wang J, Jiang W. Numerical assessment on fatigue damage evolution of materials at crack tip of CT specimen based on CPFEM
[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102687.

 


[3]周胜. 含缺陷梯度晶粒结构镍基合金的晶体塑性有限元模拟
[D]. 株洲: 湖南工业大学, 2024.

 

Zhou S. Simulation Study of Gradient Grain Size Structure Nickel-based Alloy with Flaw by Crystal Plasticity Finite Element Modeling
[D]. Zhuzhou: Hunan University of Technology, 2024.

 


[4]Chen G, Huo Y M, Lin J G, et al. Crystal plasticity finite element method investigation of normal tensile deformation anisotropy in rolled pure titanium sheet
[J]. Thin-Walled Structures, 2024, 200: 111904.

 


[5]Nijhuis B, Perdahcogˇlu E S, Boogaard A H. A robust and efficient rate-independent crystal plasticity model based on successive one-dimensional solution steps
[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 438: 117815.

 


[6]Su H, Wang J S, Liu C, et al. Orientation dependence of intracrystalline and grain boundary deformation behavior in Mg-2Y using nanoindentation and CPFEM
[J]. Journal of Alloys and Compounds, 2024, 994: 174688.

 


[7]Tong X, Li Y, Fu M W. Modelling of grain size effects in progressive microforming using CPFEM
[J]. International Journal of Mechanical Sciences, 2024, 267: 108971.

 


[8]Wessel A, Perdahcogˇlu E S, Boogaard T, et al. Incorporating precipitation-related effects on plastic anisotropy of age-hardenable aluminium alloys into crystal plasticity constitutive models
[J]. Materials Science and Engineering: A, 2025, 924: 147714.

 


[9]Lai R P, Zhao J F, Lei L M, et al. Revealing the tensile anisotropic mechanisms of additive manufactured IN718 alloy based on crystal plasticity modeling
[J]. Computational Materials Science, 2025, 251: 113735.

 


[10]Zhang Z, Shen F, Ke L L. A dislocation density-based crystal plasticity damage model for rolling contact fatigue of gradient grained structures
[J]. International Journal of Fatigue, 2024, 179: 108038.

 


[11]Long X, Chong K N, Su Y T, et al. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method
[J]. International Journal of Fatigue, 2023, 175: 107778.

 


[12]Chen B, Hamada S, Li W J, et al. Crystal plasticity FEM study of material and mechanical effects on damage accumulation mode of fatigue crack propagation
[J]. International Journal of Fatigue, 2023, 173: 107683.

 


[13]Chalapathi D, Sivaprasad P V, Kanjarla A K. A crystal plasticity investigation on the influence of orientation relationships on texture evolution during rolling in fcc/bcc two phase materials
[J]. Materials Today Communications, 2022, 31: 103300.

 


[14]Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling
[J]. International Journal of Plasticity, 2020, 125(2): 133-149.

 


[15]Asadkandi H M, Mánik T, Holmedal B, et al. Open-source implementations and comparison of explicit and implicit crystal-plasticity finite element methods
[J]. Computers and Structures, 2025, 307: 107621.

 


[16]任忠凯, 郭雄伟, 范婉婉, 等. 精密极薄带轧制理论研究进展及展望
[J]. 机械工程学报, 2020, 56(12): 73-84.

 

Ren Z K, Guo X W, Fan W W, et al. Research progress and prospects of precision ultra-thin strip rolling theory
[J]. Journal of Mechanical Engineering, 2020, 56(12): 73-84.

 


[17]Wang K, Hu Y F. Study on fracture toughness of ultra-thin stainless steel foils
[J]. Journal of Physics: Conference Series, 2024, 2827(181): 012035.

 


[18]Li L, Qi Y Y, M X G, et al. A study of the formability of stainless steel foils during micro deep drawing
[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1270(60): 012030.

 


[19]王天翔, 高祥明, 赵永顺, 等. 张力作用下304不锈钢箔材的轧制变形模拟
[J]. 塑性工程学报, 2021, 28(3): 164-170.

 

Wang T X, Gao X M, Zhao Y S, et al. Simulation on rolling deformation of 304 stainless steel foil under tension
[J]. Journal of Plasticity Engineering, 2021, 28(3): 164-170.

 


[20]Liu X, Xiao H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling
[J]. Journal of Materials Processing Technology, 2020, 278(4): 116537.

 


[21]Hu L, Jiang S Y, Zhang Y Q, et al. Texture evolution and inhomogeneous deformation of polycrystalline Cu based on crystal plasticity finite element method and particle swarm optimization algorithm
[J]. Journal of Central South University, 2017, 24(12): 2747-2756.

 


[22]周新亮, 万本振. 基于晶体塑性有限元的AZ31镁合金室温变形过程织构及孪生演化
[J]. 锻压技术, 2024, 49(1): 228-235.

 

Zhou X L, Wang B Z. Texture and twinning evolution for AZ31 magnesium alloy during room temperature deformation process based on crystal plasticity finite element
[J]. Forging & Stamping Technology, 2024, 49(1): 228-235.

 


[23]Wang H Z, Yang P, Jiang W N, et al. Crystal plasticity finite element study on the microstructure and orientations evolution of {100} columnar grains in electrical steels
[J]. Materials Today Communications, 2024, 40(3): 109678.

 


[24]Zhou X Y, Zan S S, Zeng Y F, et al. Comprehensive study of plastic deformation mechanism of polycrystalline copper using crystal plasticity finite element
[J]. Journal of Materials Research and Technology, 2024, 30:(3) 9221-9236.

 


[25]Pi H C, Han J T, Zhang C G, et al. Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM
[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(1): 43-47.

 


[26]Schmid E. Plastic of Crystals
[M]. New York: Oxford University Press, 1935.

 


[27]Bassani J L, Wu T Y. Latent hardening in single crystals. II. Analytical characterization and predictions
[J]. Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences, 1991, 435(1893): 21-41.

 


[28]Fan W W, Wang T, Hou J, et al. Calibration of 304 stainless steel strip parameters based on CPRVE model
[J]. Journal of Plastic Engineering, 2019, 26(4): 268-273.

 


[29]Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook
[M]. Cambridge, MA: MIT Press, 1970.

 


[30]陈守东. 基于晶体塑性有限元的铜极薄带轧制过程模拟研究
[D]. 沈阳: 东北大学, 2016.

 

Chen S D. Numerical Simulation on Copper Foil Rolling Process Based on Crystal Plasticity FEM
[D]. Shenyang: Northeastern University, 2016.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9