[1]严子力. 晶体取向及取向差对高温镍基合金疲劳行为的晶体塑性模拟研究 [D]. 南昌: 南昌大学, 2024.
Yan Z L. Crystal Plasticity Simulation Study on the Influence of Crystal Orientation and Misorientation on Fatigue Behavior of High-temperature Nickel-based Alloys [D]. Nanchang: Nanchang University, 2024.
[2]Wang J, Jiang W. Numerical assessment on fatigue damage evolution of materials at crack tip of CT specimen based on CPFEM [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102687.
[3]周胜. 含缺陷梯度晶粒结构镍基合金的晶体塑性有限元模拟 [D]. 株洲: 湖南工业大学, 2024.
Zhou S. Simulation Study of Gradient Grain Size Structure Nickel-based Alloy with Flaw by Crystal Plasticity Finite Element Modeling [D]. Zhuzhou: Hunan University of Technology, 2024.
[4]Chen G, Huo Y M, Lin J G, et al. Crystal plasticity finite element method investigation of normal tensile deformation anisotropy in rolled pure titanium sheet [J]. Thin-Walled Structures, 2024, 200: 111904.
[5]Nijhuis B, Perdahcogˇlu E S, Boogaard A H. A robust and efficient rate-independent crystal plasticity model based on successive one-dimensional solution steps [J]. Computer Methods in Applied Mechanics and Engineering, 2025, 438: 117815.
[6]Su H, Wang J S, Liu C, et al. Orientation dependence of intracrystalline and grain boundary deformation behavior in Mg-2Y using nanoindentation and CPFEM [J]. Journal of Alloys and Compounds, 2024, 994: 174688.
[7]Tong X, Li Y, Fu M W. Modelling of grain size effects in progressive microforming using CPFEM [J]. International Journal of Mechanical Sciences, 2024, 267: 108971.
[8]Wessel A, Perdahcogˇlu E S, Boogaard T, et al. Incorporating precipitation-related effects on plastic anisotropy of age-hardenable aluminium alloys into crystal plasticity constitutive models [J]. Materials Science and Engineering: A, 2025, 924: 147714.
[9]Lai R P, Zhao J F, Lei L M, et al. Revealing the tensile anisotropic mechanisms of additive manufactured IN718 alloy based on crystal plasticity modeling [J]. Computational Materials Science, 2025, 251: 113735.
[10]Zhang Z, Shen F, Ke L L. A dislocation density-based crystal plasticity damage model for rolling contact fatigue of gradient grained structures [J]. International Journal of Fatigue, 2024, 179: 108038.
[11]Long X, Chong K N, Su Y T, et al. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method [J]. International Journal of Fatigue, 2023, 175: 107778.
[12]Chen B, Hamada S, Li W J, et al. Crystal plasticity FEM study of material and mechanical effects on damage accumulation mode of fatigue crack propagation [J]. International Journal of Fatigue, 2023, 173: 107683.
[13]Chalapathi D, Sivaprasad P V, Kanjarla A K. A crystal plasticity investigation on the influence of orientation relationships on texture evolution during rolling in fcc/bcc two phase materials [J]. Materials Today Communications, 2022, 31: 103300.
[14]Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling [J]. International Journal of Plasticity, 2020, 125(2): 133-149.
[15]Asadkandi H M, Mánik T, Holmedal B, et al. Open-source implementations and comparison of explicit and implicit crystal-plasticity finite element methods [J]. Computers and Structures, 2025, 307: 107621.
[16]任忠凯, 郭雄伟, 范婉婉, 等. 精密极薄带轧制理论研究进展及展望 [J]. 机械工程学报, 2020, 56(12): 73-84.
Ren Z K, Guo X W, Fan W W, et al. Research progress and prospects of precision ultra-thin strip rolling theory [J]. Journal of Mechanical Engineering, 2020, 56(12): 73-84.
[17]Wang K, Hu Y F. Study on fracture toughness of ultra-thin stainless steel foils [J]. Journal of Physics: Conference Series, 2024, 2827(181): 012035.
[18]Li L, Qi Y Y, M X G, et al. A study of the formability of stainless steel foils during micro deep drawing [J]. IOP Conference Series: Materials Science and Engineering, 2022, 1270(60): 012030.
[19]王天翔, 高祥明, 赵永顺, 等. 张力作用下304不锈钢箔材的轧制变形模拟 [J]. 塑性工程学报, 2021, 28(3): 164-170.
Wang T X, Gao X M, Zhao Y S, et al. Simulation on rolling deformation of 304 stainless steel foil under tension [J]. Journal of Plasticity Engineering, 2021, 28(3): 164-170.
[20]Liu X, Xiao H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling [J]. Journal of Materials Processing Technology, 2020, 278(4): 116537.
[21]Hu L, Jiang S Y, Zhang Y Q, et al. Texture evolution and inhomogeneous deformation of polycrystalline Cu based on crystal plasticity finite element method and particle swarm optimization algorithm [J]. Journal of Central South University, 2017, 24(12): 2747-2756.
[22]周新亮, 万本振. 基于晶体塑性有限元的AZ31镁合金室温变形过程织构及孪生演化 [J]. 锻压技术, 2024, 49(1): 228-235.
Zhou X L, Wang B Z. Texture and twinning evolution for AZ31 magnesium alloy during room temperature deformation process based on crystal plasticity finite element [J]. Forging & Stamping Technology, 2024, 49(1): 228-235.
[23]Wang H Z, Yang P, Jiang W N, et al. Crystal plasticity finite element study on the microstructure and orientations evolution of {100} columnar grains in electrical steels [J]. Materials Today Communications, 2024, 40(3): 109678.
[24]Zhou X Y, Zan S S, Zeng Y F, et al. Comprehensive study of plastic deformation mechanism of polycrystalline copper using crystal plasticity finite element [J]. Journal of Materials Research and Technology, 2024, 30:(3) 9221-9236.
[25]Pi H C, Han J T, Zhang C G, et al. Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(1): 43-47.
[26]Schmid E. Plastic of Crystals [M]. New York: Oxford University Press, 1935.
[27]Bassani J L, Wu T Y. Latent hardening in single crystals. II. Analytical characterization and predictions [J]. Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences, 1991, 435(1893): 21-41.
[28]Fan W W, Wang T, Hou J, et al. Calibration of 304 stainless steel strip parameters based on CPRVE model [J]. Journal of Plastic Engineering, 2019, 26(4): 268-273.
[29]Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook [M]. Cambridge, MA: MIT Press, 1970.
[30]陈守东. 基于晶体塑性有限元的铜极薄带轧制过程模拟研究 [D]. 沈阳: 东北大学, 2016.
Chen S D. Numerical Simulation on Copper Foil Rolling Process Based on Crystal Plasticity FEM [D]. Shenyang: Northeastern University, 2016.
|