网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于多信号融合和CNN的模锻压力机液压泵异常检测方法
英文标题:Abnormality detection method for hydraulic pump of die forging press based on multi-signal fusion and CNN
作者:袁超1 2 刘子雯1 王楼锋3 王志伟3 李志成1 杨博4 于振军4 鲍宏伟4 张田民4 凌云汉1 石一磬1 张浩1 
单位:1.中国机械总院集团北京机电研究所有限公司 北京100083 2.华中科技大学 机械科学与工程学院 湖北 武汉430074 3.浙江阿波罗工具有限公司 浙江 丽水 321404 4.中国第二重型机械集团德阳万航模锻有限责任公司 四川 德阳618000 
关键词:异常检测 压力机 液压泵 多信号融合 卷积神经网络 
分类号:TH165.3
出版年,卷(期):页码:2025,50(5):219-225
摘要:

针对大型模锻压力机液压泵异常特征的分散性和模糊性,提出基于多信号融合和卷积神经网络的异常监测方法。首先,提出一种多信号融合的数据处理方法,通过计算各通道时序数据的自相关系数(ACF),将不同类型传感器的时序信号转换为多通道特征图,有效联合了各故障间的特征。然后,根据特征图,构建并改进卷积神经网络学习设备的健康状态,用于预测未来关键指标参数的相关性。最后,利用快速傅里叶变换(FFT)计算异常分数,并提出一种自适应的误差测量方法,实现对液压泵异常数据的检测。实验分析结果表明,所提出的方法可以有效实现大型模锻压力机液压泵异常监测。

For the dispersion and fuzziness of abnormal characteristics of hydraulic pumps in large-scale die forging press, an abnormal monitoring method based on multi-signal fusion and convolutional neural networks was proposed. Firstly, a data processing method based on multi-signal fusion was proposed, and the time series signals for different types of sensors were converted into multi-channel feature maps by calculating the autocorrelation coefficients (ACF) of time series data from each channel, which effectively combined the features between each fault. Then, based on the feature maps, a convolutional neural network was constructed and improved to learn the health status of the device, which was used to predict the correlation of future key indicator parameters. Finally, the abnormal score was calculated by using the Fast Fourier Transform (FFT), and an adaptive error measurement method was proposed to detect the abnormal data of hydraulic pumps. Experimental analysis results show that the proposed method can effectively achieve the abnormal monitoring of the hydraulic pumps in large-scale die forging press.

基金项目:
国家重点研发计划项目(2022YFB3706904)
作者简介:
作者简介:袁超(1992-),男,博士,高级工程师,E-mail:804785930@qq.com;通信作者:张浩(1963-),男,硕士,正高级工程师,E-mail:zh_hao@sina.com
参考文献:


[1]袁超,张浩,凌云汉,等.基于小波变换和S-G滤波的多尺度平滑预处理方法
[J].锻压技术,2023,48(6):140-155.


 

Yuan C, Zhang H, Ling Y H, et al. Multiscale smoothing preprocessing method based on wavelet transform and S-G filtering
[J]. Forging & Stamping Technology, 2023, 48(6):140-155.

 


[2]王少萍, 苑中魁, 杨光琴. 液压泵信息融合故障诊断
[J]. 中国机械工程, 2005(4): 47-51. 

 

Wang S P, Yuan Z K, Yang G Q. Study on fault diagnosis of data fussion in hydraulic pump
[J]. China Mechanical Engineering, 2005(4): 47-51.

 


[3]宋大伟, 高长乐. 压力机常见故障及解决对策分析
[J]. 锻造与冲压, 2024(18): 71-74.

 

Song D W, Gao C L. Analysis of the usual faults and its solutions for press
[J]. Forging & Metalforming, 2024(18): 71-74.

 


[4]Martínez-Heras J A, Donati A. Enhanced telemetry monitoring with novelty detection
[J]. AI Magazine, 2014, 35(4): 37-46.

 


[5]Gao Y, Yang T H, Xu M Q, et al. An unsupervised anomaly detection approach for spacecraft based on normal behavior clustering
[A]. 2012 Fifth International Conference on Intelligent Computation Technology and Automation
[C]. Zhangjiajie:IEEE, 2012.

 


[6]Iverson D L. Inductive system health monitoring
[A]International Conference on Artificial Intelligence
[C]. Las Vegas,2004.

 


[7]Li K, Wu Y L, Song S M, et al. A novel method for spacecraft electrical fault detection based on FCM clustering and WPSVM classification with PCA feature extraction
[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(1): 98-108.

 


[8]Bay S D, Schwabacher M. Mining distance-based outliers in near linear time with randomization and a simple pruning rule
[A]. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
[C]. New York: Association for Computing Machinery, 2003.

 


[9]Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers
[A]. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
[C]. New York: Association for Computing Machinery, 2000.

 


[10]Kriegel H P, Krger P, Schubert E, et al. LoOP: Local outlier probabilities
[A]. Proceedings of the 18th ACM Conference on Information and Knowledge Management
[C]. New York: Association for Computing Machinery, 2009.

 


[11]Liu F T, Ting K M, Zhou Z H. Isolation forest
[A]. 2008 Eighth IEEE International Conference on Data Mining
[C]. Pisa: IEEE, 2008.

 


[12]张韩旭,方刚.人工神经网络在金属塑性本构建模中的应用
[J]. 锻压技术,2024,49(7):1-18.

 

Zhang H X,Fang G. Application of artificial neural networks in metal plasticity constitutive modeling.
[J]. Forging & Stamping Technology, 2024, 49(7):1-8.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9