网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超低温度下42CrMo模具钢拉深凸模温度场模拟与实验研究
英文标题:Simulation and experimental research on temperature field of deep-drawing punch for 42CrMo die steel at cryogenic temperature
作者:高强 程旺军 孙耀宁 赵跃 马恩 
单位:新疆大学 机械工程学院 新疆 乌鲁木齐 830017 
关键词:超低温 模具 温度场 热流密度 导热 
分类号:TG938
出版年,卷(期):页码:2025,50(5):226-233
摘要:

拉深凸模表面温度分布均匀性对超低温拉深构件的成形性能具有重要影响。根据热力学第一定律建立了凸模温度场导热模型,利用Abaqus 6.14软件对凸模超低温冷却过程中的温度场进行模拟,并通过超低温冷却实验对数值模拟的准确性进行验证。结果表明:凸模腔体在超低温冷却过程中的温度场呈阶梯型均匀变化,当冷却时间为40~45 min时,深孔5处的温度率先趋于稳定,实验最低温度接近-121 ℃,与模拟温度-125 ℃相比相差3.3%;当冷却时间为50~55 min时,深孔1~深孔4处的温度基本趋于稳定,最低温度为-176 ℃,与模拟温度-185 ℃相比误差仅为5.1%。同时,冷却过程中的热流密度与模具腔体厚度呈反比关系,而导热量与模具腔体厚度呈正比关系,冷却时间和液氮消耗量随着模具腔体厚度增大呈指数型增大。研究结果为超低温拉深过程中模具的深冷温度场求解提供了理论支撑。

The uniformity of temperature distribution on the surface of drawing punch has an important influence on the forming performance of cryogenic temperature drawn components. According to the first law of thermodynamics, a thermal conductivity model of the temperature field for punch was established, and the temperature field of punch during the cryogenic temperature cooling process was simulated by software Abaqus-6.14. Then, the accuracy of numerical simulation was verified by the cryogenic temperature cooling experiment. The results show that the temperature field of punch cavity during the cryogenic temperature cooling process presents a step-type uniform change. When the cooling time reaches 40 to 45 min, the temperature at deep hole 5 tends to be stable first, and the lowest experiment temperature is close to -121 ℃, which is 3.3% different from the simulated temperature of -125 ℃. When the cooling time reaches 50 to 55 min, the temperatures at deep hole 1 to deep hole 4 tends to be basically stable, and the lowest temperature reaches -176 ℃, which is only 5.1% different from the simulated lowest temperature of -185 ℃. At the same time, the heat flow density during the cooling process is inversely proportional to the thickness of punch cavity, while the heat conductivity is directly proportional to the thickness of punch cavity. The cooling time and liquid nitrogen consumption increase exponentially with the increasing of the thickness of  punch cavity. Thus, the research provides theoretical support for the solving of deep cooling temperature field of punch during the cryogenic temperature deep drawing process.

基金项目:
中国博士后科学基金资助项目(2022M722666);国家自然科学基金资助项目(52365052);新疆维吾尔自治区自然科学基金资助项目(2022D01C653);新疆维吾尔自治区重点研发专项(2024B01003-2)
作者简介:
作者简介:高强(1995-),男,硕士研究生,E-mail:1125789841@qq.com;通信作者:程旺军(1987-),男,工学博士,副教授,E-mail:chengwangjun2008@126.com, chengwangjun@xju.edu.cn
参考文献:


[1]夏海元.模具制造技术的发展与创新
[J].模具制造,2024,24(1):67-70.


 

Xia H Y. Development and innovation of die & mould manufacturing technology
[J]. Die & Mould Manufacture, 2024,24(1):67-70.

 


[2]花蕾蕾,安鲁陵,匡海华,等.复合材料构件热压罐成型模具温度均匀性分析
[J].南京航空航天大学学报,2019,51(3):357-365.

 

Hua L L, An L L, Kuang H H, et al. Analysis of temperature field uniformity of composite mold in autoclave
[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(3):357-365.

 


[3]杨钦文,仪传明,肖罡,等. 18Ni300模具钢SLM成形质量评价及工艺优化
[J].塑性工程学报,2024,31(12):90-97.

 

Yang Q W,Yi C M,Xiao G,et al. Quality evaluation and process optimization of selected laser melting for 18Ni300 die steel
[J]. Journal of Plasticity Engineering,2024,31(12):90-97.

 


[4]王永贵,梁宪珠,曹正华,等.热压罐工艺成型先进复合材料构件的温度场研究综述
[J].玻璃钢/复合材料,2009(3):81-85.

 

Wang Y G, Liang X Z, Cao Z H, et al. Review of the temperature field research of autoclave molding for advanced composite components
[J]. Fiber Reinforced Plastics/Composites, 2009(3):81-85.

 


[5]李永哲,李晨鹏,周怡君,等. 大型金属构件多机协同增材制造前沿进展
[J]. 稀有金属,2023,47(5):664-678.

 

Li Y Z, Li C P, Zhou Y J,et al. Progresses in multi-robot cooperative additive manufacturing of large-scale metal parts
[J]. Chinese Journal of Rare Metals,2023,47(5):664-678.

 


[6]陈国恩,汪学阳,黄志垣,等.压铸模具温度场的CAE模拟分析
[J].特种铸造及有色合金,2018,38(3):271-273.

 

Chen G E, Wang X Y, Huang Z Y, et al. CAE simulation analysis of temperature field of die-casting die
[J]. Special Casting & Nonferrous Alloys, 2018,38(3):271-273.

 


[7]庞立娟,张雪峰,黄治勇.热冲压成形模具冷却系统的设计研究
[J].粉末冶金工业,2018,28(4):71-76.

 

Pang L J, Zhang X F, Huang Z Y. Research and design on cooling system of hot stamping die
[J]. Powder Metallurgy Industry, 2018,28(4):71-76.

 


[8]赵一鸣,安鲁陵,匡海华,等.复合材料构件成型模具温度场均匀性改善研究
[J].航空制造技术,2018,61(5):84-88,94.

 

Zhao Y M, An L L, Kuang H H, et al. Study on improvement of temperature field uniformity of composite mold
[J]. Aeronautical Manufacturing Technology, 2018,61(5):84-88,94.

 


[9]胡云,林彬. 钛合金曲面类零件的热冲压工艺
[J]. 锻压技术,2023,48(3):95-98.

 

Hu Y,Lin B. Hot stamping process of titanium alloy curved surface parts
[J]. Forging & Stamping Technology,2023,48(3):95-98.

 


[10]Agazzi A, Sobotka V, Legoff R, et al. Optimal cooling design in injection dieing process-A new approach based on morphological surfaces
[J]. Applied Thermal Engineering, 2013, 52(1): 170-178.

 


[11]Gniatczyk, Jeffrey L A, George R D, et al. Composite molding tools and parts and processes of forming molding tools
[P]. US: US 6,309,587 B1, 2001-10-30.

 


[12]袁凯,丛茜,王永青,等.基于AMESim的液氮可控传输性能分析
[J].低温工程,2017,(3):49-54.

 

Yuan K, Cong Q, Wang Y Q, et al. Analysis on controllable transmission performance of liquid nitrogen based on AMESim
[J]. Cryogenics, 2017, (3):49-54.

 


[13]岑升波.基于ABAQUS双U型前防撞梁热冲压成形过程的温度场数值模拟
[J].内燃机与配件,2020(9):34-36.

 

Cen S B. Numerical simulation of temperature field in hot stamping and forming process of double U-shaped front bumper beam based on ABAQUS
[J]. Internal Combustion Engine & Parts, 2020(9):34-36.

 


[14]崔小龙,王敏杰,魏兆成,等.3D打印随形冷却模具零件的温度场和应力场数值模拟
[J].模具制造,2022,22(7):58-65.

 

Cui X L, Wang M J, Wei Z C, et al. Numerical simulation of temperature field and stress field of 3D printed conformal cooling mold parts
[J]. Die & Mould Manufacture, 2022,22(7):58-65.

 


[15]刘智强.低温相变条件下多孔介质传热研究
[D].北京:中国石油大学(北京),2023.

 

Liu Z Q. Investigation on Heat Transfer with Phase Transition in Porous Media at Low Temperature
[D]. Beijing:China University of Petroleum(Beijing), 2023.

 


[16]吕维敏,黄钢妹,章忠敏,等.低温微创手术液氮传输过程的压力和传热分析
[J].低温工程,2008(3):55-60.

 

Lyu W M, Huang G M, Zhang Z M, et al. Analysis of pressure change and heat transfer of liguid nitrogen transmissive process in cryosurgical minimal invasive surgery
[J]. Cryogenics, 2008(3):55-60.

 


[17]吕佳镁,马贵春,郭靖宇,等.基于COMSOL的热压罐成型模具温度场分析
[J].中北大学学报(自然科学版),2021,42(5):412-418.

 

Lyu J M, Ma G C, Guo J Y, et al. Analysis of temperature field of autoclave molding mold based on COMSOL
[J]. Journal of North University of China (Natural Science Edition), 2021,42(5):412-418.

 


[18]刘伟,程旺军,郝永刚,等.铝合金超低温双增效应与成形性能
[J].中国有色金属学报,2022,32(7):1845-1854.

 

Liu W, Cheng W J, Hao Y G, et al. Dual enhancement effect and formability of aluminum alloys at cryogenic temperatures
[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(7): 1845-1854.

 


[19]陈广.低温液体氧氮化改善H13型模具钢耐铝液腐蚀和磨损性能的研究
[D].成都:四川大学,2022.

 

Chen G. Studies on the Improvement of Molten Aluminum Corrosion and Wear Resistance of H13 Die Steel by Low-temperature Liquid Oxy-nitriding
[D]. Sichuan: Sichuan University, 2022.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9