网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同变形量下304L抗菌奥氏体不锈钢的加工硬化行为
英文标题:Work hardening behavior of 304L antibacterial austenitic stainless steel under different deformation amounts
作者:赵立冬1 庞启航1 徐梅2 李维娟1 霍钰1 王冲1 
单位:1. 辽宁科技大学 材料与冶金学院 辽宁 鞍山 114051 2. 太原钢铁集团有限公司 先进不锈钢国家重点实验室 山西 太原 030003 
关键词:奥氏体不锈钢 晶粒尺寸 显微组织 变形量 加工硬化 
分类号:TG142.1
出版年,卷(期):页码:2025,50(5):245-252
摘要:

通过扫描电镜(SEM)、电子背散射衍射(EBSD)、拉伸试验机等研究了不同预拉伸应变量(8%、20%、30%和40%)对304L奥氏体不锈钢加工硬化行为的影响。研究结果表明:随着应变量的增加,试验钢有效平均晶粒尺寸由5.12 μm细化至3.85 μm,晶粒的长宽比逐渐增至2.8∶1;试验钢在应变过程中发生马氏体相变产生形变马氏体,其体积分数由0.47%增长至3.2%;试验钢的抗拉强度由638.06 MPa提升至920.51 MPa,屈服强度由320.52 MPa提升至897.67 MPa。试验钢的加工硬化能力随着应变量的增加而增强,其主要强化机制为孪晶强化、形变马氏体强化和位错强化,当应变量为0%~20%时,以孪晶强化为主导,此时试验钢具有较好的塑性伸长率和强度。

The influences of different pre-tensile strain amounts (8%, 20%, 30% and 40%) on the work hardening behavior of 304L austenitic stainless steel was systematically investigated by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and tensile testing. The results indicate that as the strain increases, the effective average grain size of test steel decreases from 5.12 μm to 3.85 μm, and the aspect ratio of grain gradually increases to 2.8∶1. Strain-induced martensitic transformation occurred during deformation,with the volume fraction of deformation martensitic increasing from 0.47% to 3.2%. The tensile strength of test steel increases from 638.06 MPa to 920.51 MPa, the yield strength increases from 320.52 MPa to 897.67 MPa. The work hardening ability of test steel increases with the increasing of strain, its main strengthening mechanisms are twinning strengthening, deformation martensite strengthening and dislocation strengthening. When the strain is 0%-20%, twinning strengthening is dominant, and the test steel has good plastic elongation and strength.

基金项目:
国家自然科学基金资助项目(52004122)
作者简介:
作者简介:赵立冬(2000-),男,硕士研究生,E-mail:864609566@qq.com;通信作者:庞启航(1986-),男,博士,副教授,E-mail:qihang25@163.com
参考文献:


[1]徐鸣悦,王丛,李运刚,等. 抗菌不锈钢的研究进展
[J]. 铸造技术,2016, 37(6): 1085-1089.


 

Xu M Y, Wang C, Li Y G, et al.Research progress of antimicrobial stainless steel
[J]. Foundry Technology, 2016, 37(6): 1085-1089.

 


[2]叶丽芳,陈惠波,林照亮,等. 不锈钢抗菌技术研究进展
[J]. 热加工工艺,2014, 43(20): 10-14.

 

Ye L F, Chen H B, Lin Z L, et al. Research progress in antimicrobial stainless steel
[J]. Hot Working Technology, 2014, 43(20): 10-14.

 


[3]杨柯,任玲,于亚川,等. 医用含铜抗菌金属——从研究走上应用
[J]. 集成技术,2021, 10(3): 69-77.

 

Yang K, Ren L, Yu Y C. et al. Cu-bearing antimicrobial medical metals-from research to application
[J]. Journal of Integrated Technology, 2021, 10(3): 69-77.

 


[4]飞尚才. SUS304奥氏体不锈钢冷轧及退火工艺对组织和性能的影响
[D]. 兰州:兰州理工大学,2011.

 

Fei S C. Effect of Cold Rolling and Annealing Process on the Organization and Properties of SUS304 Austenitic Stainless Steel
[D]. Lanzhou: Lanzhou University of Technology, 2011.

 


[5]申勇峰,李晓旭,薛文颖,等. 304不锈钢拉伸变形过程中的马氏体相变
[J]. 东北大学学报(自然科学版),2012, 33(8): 1125-1128.

 

Shen Y F, Li X X, Xue W Y, et al. Changes in martensitic fraction of 304SS in tensile deformation
[J]. Journal of Northeastern University (Natural Science), 2012, 33(8): 1125-1128.

 


[6]龚娜,武会宾,曹嘉明,等. 冷变形对304奥氏体不锈钢组织和性能的影响
[J]. 热加工工艺,2018, 47(4): 62-66.

 

Gong N, Wu H B, Cao J M, et al. Effect of cold deformation on structure and properties of 304 austenitic stainless steel
[J]. Hot Working Technology, 2018, 47(4): 62-66.

 


[7]周翠兰,刘红梅,白晋钢,等. 冷轧变形量对304不锈钢力学性能的影响
[J]. 钢铁,2012, 47(10): 70-75.

 

Zhou C L, Liu H M, Bai J G, et al. Effect of the cold-rolled reduction on the mechanical properties of 304 austenitic stainless steel sheets
[J]. Steel, 2012, 47(10): 70-75.

 


[8]吴海林,阮志勇,王碧,等. 节镍型奥氏体不锈钢组织性能及控制机理研究
[J]. 轧钢,2022, 39(3): 17-22.

 

Wu H L, Ruan Z Y, W B, et al. Study on microstructure, mechanical properties and control mechanism of low-nickel austenitic stainless steel
[J]. Steel Rolling, 2022, 39(3): 17-22.

 


[9]师雨晴,段国升,宋令慧,等. 循环加载频率对镁合金棘轮应变的影响
[J]. 航空学报,2024, 45(24): 273-286.

 

Shi Y Q, Duan G S, Song L H, et al. Study on the effect of cyclic loading frequency on the strain of magnesium alloy ratchet
[J]. Journal of Aeronautics, 2024, 45(24): 273-286.

 


[10]潘向南. S38C车轴冲击损伤疲劳性能研究
[D]. 成都:西南交通大学,2018.

 

Pan X N. Research on Fatigue Performance of S38C Axle Impact Damage
[D]. Chengdu: Southwest Jiaotong University, 2018.

 


[11]杨卓越,王建,陈嘉砚,等. 304奥氏体不锈钢热诱发马氏体相变研究
[J]. 材料热处理学报,2008, 29(1): 98-101.

 

Yang Z Y, Wang J, Chen J Y, et al. Thermal-induced martensite transformation in 304 austenitic stainless steel
[J]. Transactions of Materials and Heat Treatment, 2008, 29(1): 98-101.

 


[12]杨建国,陈双建,黄楠,等. 304不锈钢形变诱导马氏体相变的影响因素分析
[J]. 焊接学报,2012, 33(12): 89-92,117.

 

Yang J G, Chen S J, Huang N, et al. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel
[J]. Transactions of The China Welding Institution, 2012, 33(12): 89-92,117.

 


[13]王磊,刘梦雅,刘杨,等. 镍基高温合金表面冲击强化机制及应用研究进展
[J]. 金属学报,2023, 59(9): 1173-1189.

 

Wang L, Liu M Y, Liu Y, et al. Research progress on surface impact strengthening mechanisms and application of nickel-based superalloys
[J]. Acta Metallurgica Sinica, 2023, 59(9): 1173-1189.

 


[14]秦小梅. Fe-Mn-Al-C系TWIP钢的塑性变形机制及组织性能研究
[D]. 沈阳:东北大学,2011.

 

Qin X M. Research on Plastic Deformation Mechanism and Organizational Properties of Fe-Mn-Al-C System TWIP Steel
[D]. Shenyang: Northeastern University, 2011.

 


[15]邹章雄,项金钟,许思勇,等. Hall-Petch关系的理论推导及其适用范围讨论
[J]. 物理测试,2012, 30(6): 13-17.

 

Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of the Hall-Petch relationship and discussion of its applicable range
[J]. Physical Examination and Testing, 2012, 30(6): 13-17.

 


[16]司广全,李芳草,田晓,等. 晶粒拉长形态对S30432不锈钢管组织与性能的影响
[J]. 锻压技术,2024, 49(8): 214-223.

 

Si G Q, Li F C, Tian X, et al. Effect of grain elongation morphology on microstructure and properties of S30432 stainless steel tube
[J]. Forging & Stamping Technology, 2024, 49(8): 214-223.

 


[17]Dong H, Li Z C, Somani M C, et al. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel
[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119: 104489.

 


[18]郑步云,陈鑫,雷剑波,等. 热处理对激光熔化沉积18Ni300马氏体时效钢微观组织和力学性能的影响
[J]. 表面技术,2023, 52(3): 388-398.

 

Zheng B Y, Chen X, Lei J B, et al. Effect of heat treatment on microstructure and mechanical properties of 18Ni300 maraging steel prepared by laser melting deposition
[J]. Surface Technology, 2023, 52(3): 388-398.

 


[19]宋仁伯,项建英,侯东坡,等. 316L不锈钢热加工硬化行为及机制
[J]. 金属学报,2010, 46(1): 57-61.

 

Song R B, Xiang J Y, Hou D P, et al. Behavior and mechanism of hot workhardening for 316L stainless steel
[J]. Acta Metallurgica Sinica, 2010, 46(1): 57-61.

 


[20]程旺军,崔栋栋,孙耀宁,等. 奥氏体不锈钢超低温变形诱导强化机制的研究进展
[J]. 锻压技术,2024, 49(12): 208-216.

 

Cheng W J, Cui D D, Sun Y N, et al. Ultra-low temperature deformation-inducing strengthening mechanism of austenitic stainless steel
[J]. Forging & Stamping Technology, 2024, 49(12): 208-216.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9