[1]徐鸣悦,王丛,李运刚,等. 抗菌不锈钢的研究进展 [J]. 铸造技术,2016, 37(6): 1085-1089.
Xu M Y, Wang C, Li Y G, et al.Research progress of antimicrobial stainless steel [J]. Foundry Technology, 2016, 37(6): 1085-1089.
[2]叶丽芳,陈惠波,林照亮,等. 不锈钢抗菌技术研究进展 [J]. 热加工工艺,2014, 43(20): 10-14.
Ye L F, Chen H B, Lin Z L, et al. Research progress in antimicrobial stainless steel [J]. Hot Working Technology, 2014, 43(20): 10-14.
[3]杨柯,任玲,于亚川,等. 医用含铜抗菌金属——从研究走上应用 [J]. 集成技术,2021, 10(3): 69-77.
Yang K, Ren L, Yu Y C. et al. Cu-bearing antimicrobial medical metals-from research to application [J]. Journal of Integrated Technology, 2021, 10(3): 69-77.
[4]飞尚才. SUS304奥氏体不锈钢冷轧及退火工艺对组织和性能的影响 [D]. 兰州:兰州理工大学,2011.
Fei S C. Effect of Cold Rolling and Annealing Process on the Organization and Properties of SUS304 Austenitic Stainless Steel [D]. Lanzhou: Lanzhou University of Technology, 2011.
[5]申勇峰,李晓旭,薛文颖,等. 304不锈钢拉伸变形过程中的马氏体相变 [J]. 东北大学学报(自然科学版),2012, 33(8): 1125-1128.
Shen Y F, Li X X, Xue W Y, et al. Changes in martensitic fraction of 304SS in tensile deformation [J]. Journal of Northeastern University (Natural Science), 2012, 33(8): 1125-1128.
[6]龚娜,武会宾,曹嘉明,等. 冷变形对304奥氏体不锈钢组织和性能的影响 [J]. 热加工工艺,2018, 47(4): 62-66.
Gong N, Wu H B, Cao J M, et al. Effect of cold deformation on structure and properties of 304 austenitic stainless steel [J]. Hot Working Technology, 2018, 47(4): 62-66.
[7]周翠兰,刘红梅,白晋钢,等. 冷轧变形量对304不锈钢力学性能的影响 [J]. 钢铁,2012, 47(10): 70-75.
Zhou C L, Liu H M, Bai J G, et al. Effect of the cold-rolled reduction on the mechanical properties of 304 austenitic stainless steel sheets [J]. Steel, 2012, 47(10): 70-75.
[8]吴海林,阮志勇,王碧,等. 节镍型奥氏体不锈钢组织性能及控制机理研究 [J]. 轧钢,2022, 39(3): 17-22.
Wu H L, Ruan Z Y, W B, et al. Study on microstructure, mechanical properties and control mechanism of low-nickel austenitic stainless steel [J]. Steel Rolling, 2022, 39(3): 17-22.
[9]师雨晴,段国升,宋令慧,等. 循环加载频率对镁合金棘轮应变的影响 [J]. 航空学报,2024, 45(24): 273-286.
Shi Y Q, Duan G S, Song L H, et al. Study on the effect of cyclic loading frequency on the strain of magnesium alloy ratchet [J]. Journal of Aeronautics, 2024, 45(24): 273-286.
[10]潘向南. S38C车轴冲击损伤疲劳性能研究 [D]. 成都:西南交通大学,2018.
Pan X N. Research on Fatigue Performance of S38C Axle Impact Damage [D]. Chengdu: Southwest Jiaotong University, 2018.
[11]杨卓越,王建,陈嘉砚,等. 304奥氏体不锈钢热诱发马氏体相变研究 [J]. 材料热处理学报,2008, 29(1): 98-101.
Yang Z Y, Wang J, Chen J Y, et al. Thermal-induced martensite transformation in 304 austenitic stainless steel [J]. Transactions of Materials and Heat Treatment, 2008, 29(1): 98-101.
[12]杨建国,陈双建,黄楠,等. 304不锈钢形变诱导马氏体相变的影响因素分析 [J]. 焊接学报,2012, 33(12): 89-92,117.
Yang J G, Chen S J, Huang N, et al. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel [J]. Transactions of The China Welding Institution, 2012, 33(12): 89-92,117.
[13]王磊,刘梦雅,刘杨,等. 镍基高温合金表面冲击强化机制及应用研究进展 [J]. 金属学报,2023, 59(9): 1173-1189.
Wang L, Liu M Y, Liu Y, et al. Research progress on surface impact strengthening mechanisms and application of nickel-based superalloys [J]. Acta Metallurgica Sinica, 2023, 59(9): 1173-1189.
[14]秦小梅. Fe-Mn-Al-C系TWIP钢的塑性变形机制及组织性能研究 [D]. 沈阳:东北大学,2011.
Qin X M. Research on Plastic Deformation Mechanism and Organizational Properties of Fe-Mn-Al-C System TWIP Steel [D]. Shenyang: Northeastern University, 2011.
[15]邹章雄,项金钟,许思勇,等. Hall-Petch关系的理论推导及其适用范围讨论 [J]. 物理测试,2012, 30(6): 13-17.
Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of the Hall-Petch relationship and discussion of its applicable range [J]. Physical Examination and Testing, 2012, 30(6): 13-17.
[16]司广全,李芳草,田晓,等. 晶粒拉长形态对S30432不锈钢管组织与性能的影响 [J]. 锻压技术,2024, 49(8): 214-223.
Si G Q, Li F C, Tian X, et al. Effect of grain elongation morphology on microstructure and properties of S30432 stainless steel tube [J]. Forging & Stamping Technology, 2024, 49(8): 214-223.
[17]Dong H, Li Z C, Somani M C, et al. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119: 104489.
[18]郑步云,陈鑫,雷剑波,等. 热处理对激光熔化沉积18Ni300马氏体时效钢微观组织和力学性能的影响 [J]. 表面技术,2023, 52(3): 388-398.
Zheng B Y, Chen X, Lei J B, et al. Effect of heat treatment on microstructure and mechanical properties of 18Ni300 maraging steel prepared by laser melting deposition [J]. Surface Technology, 2023, 52(3): 388-398.
[19]宋仁伯,项建英,侯东坡,等. 316L不锈钢热加工硬化行为及机制 [J]. 金属学报,2010, 46(1): 57-61.
Song R B, Xiang J Y, Hou D P, et al. Behavior and mechanism of hot workhardening for 316L stainless steel [J]. Acta Metallurgica Sinica, 2010, 46(1): 57-61.
[20]程旺军,崔栋栋,孙耀宁,等. 奥氏体不锈钢超低温变形诱导强化机制的研究进展 [J]. 锻压技术,2024, 49(12): 208-216.
Cheng W J, Cui D D, Sun Y N, et al. Ultra-low temperature deformation-inducing strengthening mechanism of austenitic stainless steel [J]. Forging & Stamping Technology, 2024, 49(12): 208-216.
|