[1]Egea S J A,Celentano J D,Rojas G A H,et al.Thermomechanical analysis of an electrically assisted wire drawing process [J].Journal of Manufacturing Science and Engineering,2017,139(11):1-7.
[2]Ji S D,Li Z W,Wang Y,et al.Joint formation and mechanical properties of back heating assisted friction stir welded Ti-6Al-4V alloy [J].Materials & Design,2017,113:37-46.
[3]Valoppi B,Egea S J A,Zhang Z,et al.A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy [J].CIRP Annals-Manufacturing Technology,2016,65(1):309-312.
[4]Li J L,Wang B Y,Ji H C,et al.Effects of the cross-wedge rolling parameters on the formability of Ti-6Al-4V alloy [J].The International Journal of Advanced Manufacturing Technology,2017,92:2217-2229.
[5]Li P A,Wang B Y,Cuiping Y,et al.Study on necking defects,microstructure and mechanical properties of TC4 alloy by cross wedge rolling [J].International Journal of Material Forming,2022,15(6):75.
[6]唐伟,余传魁,汪昌顺,等.Ti-6Al-4V合金螺栓滚压过程中的组织演变规律研究 [J].稀有金属,2023,47(11):1486-1494.
Tang W,Yu C K,Wang C S,et al.Microstructure evolution of Ti-6Al-4V alloy bolt during thread rolling process [J].Chinese Journal of Rare Metals,2023,47(11):1486-1494.
[7]李东宽,郭岩,杨立新,等.TC4钛合金两相区的热变形行为及微观组织 [J].铸造技术,2022,43(2):114-119.
Li D K,Guo Y,Yang L X,et al.Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region [J].Foundry Technology,2022,43(2):114-119.
[8]Neminathan P V,Velpari M S,Ananda Rao S R,et al.Development of ring forgings in Ti-6Al-4V alloy for aero-engine applications [J].Transactions of the Indian Institute of Metals,2008,61(5):355-361.
[9]刘婉颖,朱毅科,林元华,等.热处理对TC4钛合金显微组织和力学性能的影响 [J].材料导报,2013,27(18):108-111.
Liu W Y,Zhu Y K,Lin Y H,et al.Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy [J].Materials Reports,2013,27(18):108-111.
[10]翟大军,税玥,袁满,等.α相含量及形态对TC4钛合金组织和力学性能的影响 [J].金属热处理,2019,44(10):129-134.
Zhai D J,Shui Y,Yuan M,et al.Effects of content and morphology of α phase on microstructure and mechanical properties of TC4 alloy [J].Heat Treatment of Metals,2019,44(10):129-134.
[11]李四清,刘晶南,王旭,等.初生α相含量对TC4钛合金性能的影响 [J].中国有色金属学报,2013,23:S67-S70.
Li S Q,Liu J N,Wang X,et al.Effect of primary α-phase volume fraction on mechanical properties of TC4 titanium alloy ring forging [J].The Chinese Journal of Nonferrous Metals,2013,23:S67-S70.
[12]Bruschi S,Poggio S,Quadrini F,et al.Workability of Ti-6Al-4V alloy at high temperatures and strain rates [J].Materials Letters,2004,58(27/28):3622-3629.
[13]Luo J,Li M Q,Li H,et al.Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy [J].Materials Science & Engineering A,2009,505(1-2):88-95.
[14]Dipti S,Sumantra M,Bhaduri A K.Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel [J].Materials and Design,2009,31(2):981-984.
[15]Zhou M,Clode M P.Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation [J].Mechanics of Materials,1998,27(2):63-76.
[16]Lin Y C,Chen X M,Liu G.A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel [J].Materials Science & Engineering A,2010,527(26):6980-6986.
[17]Samantaray D,Mandal S,Borah U,et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel [J].Materials Science & Engineering A,2009,526(1-2):1-6.
[18]Zhang B,Shang X D,Yao S,et al.A comparative study on Johnson-Cook, modified Johnson-Cook, modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict hot deformation behavior of TA2 [J].High Temperature Materials and Processes,2019,38(2019):699-714.
[19]Sellars C M,Mctegart W J.On the mechanism of hot deformation [J].Acta Metallurgica,1966,14(9):1136-1138.
[20]McQueen H J,Ryan N.Constitutive analysis in hot working [J].Materials Science & Engineering A,2002,322(1-2):43-63.
[21]Liu H Q,Chen Z C,Yu W,et al.Deformation behavior and constitutive equation of 42CrMo steel at high temperature [J].Metals,2021,11(10):1614.
[22]Mandal S,Rakesh V,Sivaprasad P,et al.Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J].Materials Science & Engineering A,2009,500(1-2):114-121.
[23]Murugesan M,Sajjad M,Jung D W.Microstructure evaluation and constitutive modeling of AISI-1045 steel for flow stress prediction under hot working conditions [J].Symmetry,2020,12(5):782.
[24]Quan G Z,Luo G C,Liang J T,et al.Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range [J].Computational Materials Science,2015,97:136-147.
[25]Alabort E,Putman D,Reed R.Superplasticity in Ti-6Al-4V:Characterisation, modelling and applications [J].Acta Materialia,2015,95:428-442.
[26]Zong Y Y,Shan D B,Xu M,et al.Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation [J].Journal of Materials Processing Technology,2009,209(4):1988-1994.
[27]罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其流动应力模型 [J].中国有色金属学报,2008,18(8):1395-1401.
Luo J,Li M Q,Li H,et al.High temperature deformation behavior of TC4 titanium alloy and its flows stress model [J].The Chinese Journal of Nonferrous Metals,2008,18(8):1395-1401.
[28]Luo J,Ye P,Han W C,et al.Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region [J].Transactions of Nonferrous Metals Society of China,2019,29(7):1430-1438.
[29]Ning Y Q,Xie B C,Liang H Q,et al.Dynamic softening behavior of TC18 titanium alloy during hot deformation [J].Materials & Design,2015,71:68-77.
[30]Li J L,Wang B Y,Qin Y,et al.Investigating the effects of process parameters on the cross wedge rolling of TC6 alloy based on temperature and strain rate sensitivities [J].The International Journal of Advanced Manufacturing Technology,2019,103:2563-2577.
[31]刘荣娥,王宝雨,冯鹏妮,等.粉末冶金TC4钛合金热压缩动态软化行为分析 [J].稀有金属材料与工程,2021,50(7):2447-2454.
Liu R E,Wang B Y,Feng P N,et al.Dynamic softening behavior analysis of powder metallurgy TC4 titanium alloy during hot compression [J].Rare Metal Materials and Engineering,2021,50(7):2447-2454.
|