网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于应变补偿的TC4钛合金双相区本构建模与微观组织演变
英文标题:Constitutive modeling and microstructure evolution of TC4 titanium alloy in dual-phase zone based on strain compensation
作者:李沛艾1 2 宋永强1 魏超2 张庆伟1 
单位:1. 中际联合(北京)科技股份有限公司 北京 101106 2. 北京理工大学 机械与车辆学院 北京 100081 
关键词:TC4钛合金 高温变形 流变应力 本构模型 微观组织演变 
分类号:TG115;TG146
出版年,卷(期):页码:2025,50(5):259-267
摘要:

基于变形温度为850~950 ℃和应变速率为0.01~10 s-1的等温压缩热模拟实验,研究了TC4钛合金在α+β双相区内的高温变形行为,建立了基于应变补偿的Arrhenius型本构模型用以描述TC4钛合金的流变行为。结果表明:随变形温度升高和应变速率减小,TC4钛合金的峰值应力减小;升高变形温度和增大变形速率时,α相的体积分数降低,但变形量对其影响不大;增大变形量会增加位错累积、提高畸变能,进而促使α晶粒发生动态再结晶;降低应变速率可以促进α晶粒动态再结晶的形成和发展。所构建的本构模型对流变应力的预测结果与实验结果接近,两者的线性相关系数为0.999,平均绝对误差为2.94%,证明该模型具有较高的预测精度。

Based on isothermal compression thermal-simulation experiments with the deformation temperature of 850-950 ℃ and the strain rate of 0.01-10 s-1, the high-temperature deformation behavior of TC4 titanium alloy in the α+β dual-phase region  was studied, and an Arrhenius-type constitutive model based on strain compensation was established to describe the rheology behavior of TC4 titanium alloy. The results show that as the deformation temperature increases and the strain rate decreases, the peak stress of TC4 titanium alloy decreases. The volume fraction of α phase decreases with the increasing of deformation temperature and strain rate, while the deformation amount has an insignificant effect on it. Increasing the deformation amount could increase the accumulation of dislocations and the distortion energy, thereby promoting the dynamic recrystallization of α grains. Reducing the strain rate could promote the formation and development of dynamic recrystallization of α grains. The prediction results of the established constitutive model for rheological stress are close to the experimental results. The linear correlation coefficient between the two is 0.999, and the average absolute error is 2.94%, which indicates that the constitutive model has high prediction accuracy. 

基金项目:
北京市自然科学基金资助项目(4242047)
作者简介:
作者简介:李沛艾(1988-),男,博士,工程师,E-mail:beibeipeipei@126.com
参考文献:


[1]Egea S J A,Celentano J D,Rojas G A H,et al.Thermomechanical analysis of an electrically assisted wire drawing process
[J].Journal of Manufacturing Science and Engineering,2017,139(11):1-7.


 


[2]Ji S D,Li Z W,Wang Y,et al.Joint formation and mechanical properties of back heating assisted friction stir welded Ti-6Al-4V alloy
[J].Materials & Design,2017,113:37-46.

 


[3]Valoppi B,Egea S J A,Zhang Z,et al.A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy
[J].CIRP Annals-Manufacturing Technology,2016,65(1):309-312.

 


[4]Li J L,Wang B Y,Ji H C,et al.Effects of the cross-wedge rolling parameters on the formability of Ti-6Al-4V alloy
[J].The International Journal of Advanced Manufacturing Technology,2017,92:2217-2229.

 


[5]Li P A,Wang B Y,Cuiping Y,et al.Study on necking defects,microstructure and mechanical properties of TC4 alloy by cross wedge rolling
[J].International Journal of Material Forming,2022,15(6):75.

 


[6]唐伟,余传魁,汪昌顺,等.Ti-6Al-4V合金螺栓滚压过程中的组织演变规律研究
[J].稀有金属,2023,47(11):1486-1494.

 

Tang W,Yu C K,Wang C S,et al.Microstructure evolution of Ti-6Al-4V alloy bolt during thread rolling process
[J].Chinese Journal of Rare Metals,2023,47(11):1486-1494.

 


[7]李东宽,郭岩,杨立新,等.TC4钛合金两相区的热变形行为及微观组织
[J].铸造技术,2022,43(2):114-119.

 

Li D K,Guo Y,Yang L X,et al.Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region
[J].Foundry Technology,2022,43(2):114-119.

 


[8]Neminathan P V,Velpari M S,Ananda Rao S R,et al.Development of ring forgings in Ti-6Al-4V alloy for aero-engine applications
[J].Transactions of the Indian Institute of Metals,2008,61(5):355-361.

 


[9]刘婉颖,朱毅科,林元华,等.热处理对TC4钛合金显微组织和力学性能的影响
[J].材料导报,2013,27(18):108-111.

 

Liu W Y,Zhu Y K,Lin Y H,et al.Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy
[J].Materials Reports,2013,27(18):108-111.

 


[10]翟大军,税玥,袁满,等.α相含量及形态对TC4钛合金组织和力学性能的影响
[J].金属热处理,2019,44(10):129-134.

 

Zhai D J,Shui Y,Yuan M,et al.Effects of content and morphology of α phase on microstructure and mechanical properties of TC4 alloy
[J].Heat Treatment of Metals,2019,44(10):129-134.

 


[11]李四清,刘晶南,王旭,等.初生α相含量对TC4钛合金性能的影响
[J].中国有色金属学报,2013,23:S67-S70.

 

Li S Q,Liu J N,Wang X,et al.Effect of primary α-phase volume fraction on mechanical properties of TC4 titanium alloy ring forging
[J].The Chinese Journal of Nonferrous Metals,2013,23:S67-S70.

 


[12]Bruschi S,Poggio S,Quadrini F,et al.Workability of Ti-6Al-4V alloy at high temperatures and strain rates
[J].Materials Letters,2004,58(27/28):3622-3629.

 


[13]Luo J,Li M Q,Li H,et al.Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy
[J].Materials Science & Engineering A,2009,505(1-2):88-95.

 


[14]Dipti S,Sumantra M,Bhaduri A K.Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel
[J].Materials and Design,2009,31(2):981-984.

 


[15]Zhou M,Clode M P.Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation
[J].Mechanics of Materials,1998,27(2):63-76.

 


[16]Lin Y C,Chen X M,Liu G.A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel
[J].Materials Science & Engineering A,2010,527(26):6980-6986.

 


[17]Samantaray D,Mandal S,Borah U,et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel
[J].Materials Science & Engineering A,2009,526(1-2):1-6.

 


[18]Zhang B,Shang X D,Yao S,et al.A comparative study on Johnson-Cook, modified Johnson-Cook, modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict hot deformation behavior of TA2
[J].High Temperature Materials and Processes,2019,38(2019):699-714.

 


[19]Sellars C M,Mctegart W J.On the mechanism of hot deformation
[J].Acta Metallurgica,1966,14(9):1136-1138.

 


[20]McQueen H J,Ryan N.Constitutive analysis in hot working
[J].Materials Science & Engineering A,2002,322(1-2):43-63.

 


[21]Liu H Q,Chen Z C,Yu W,et al.Deformation behavior and constitutive equation of 42CrMo steel at high temperature
[J].Metals,2021,11(10):1614.

 


[22]Mandal S,Rakesh V,Sivaprasad P,et al.Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel
[J].Materials Science & Engineering A,2009,500(1-2):114-121.

 


[23]Murugesan M,Sajjad M,Jung D W.Microstructure evaluation and constitutive modeling of AISI-1045 steel for flow stress prediction under hot working conditions
[J].Symmetry,2020,12(5):782.

 


[24]Quan G Z,Luo G C,Liang J T,et al.Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range
[J].Computational Materials Science,2015,97:136-147.

 


[25]Alabort E,Putman D,Reed R.Superplasticity in Ti-6Al-4V:Characterisation, modelling and applications
[J].Acta Materialia,2015,95:428-442.

 


[26]Zong Y Y,Shan D B,Xu M,et al.Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation
[J].Journal of Materials Processing Technology,2009,209(4):1988-1994.

 


[27]罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其流动应力模型
[J].中国有色金属学报,2008,18(8):1395-1401.

 

Luo J,Li M Q,Li H,et al.High temperature deformation behavior of TC4 titanium alloy and its flows stress model
[J].The Chinese Journal of Nonferrous Metals,2008,18(8):1395-1401.

 


[28]Luo J,Ye P,Han W C,et al.Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region
[J].Transactions of Nonferrous Metals Society of China,2019,29(7):1430-1438.

 


[29]Ning Y Q,Xie B C,Liang H Q,et al.Dynamic softening behavior of TC18 titanium alloy during hot deformation
[J].Materials & Design,2015,71:68-77.

 


[30]Li J L,Wang B Y,Qin Y,et al.Investigating the effects of process parameters on the cross wedge rolling of TC6 alloy based on temperature and strain rate sensitivities
[J].The International Journal of Advanced Manufacturing Technology,2019,103:2563-2577.

 


[31]刘荣娥,王宝雨,冯鹏妮,等.粉末冶金TC4钛合金热压缩动态软化行为分析
[J].稀有金属材料与工程,2021,50(7):2447-2454.

 

Liu R E,Wang B Y,Feng P N,et al.Dynamic softening behavior analysis of powder metallurgy TC4 titanium alloy during hot compression
[J].Rare Metal Materials and Engineering,2021,50(7):2447-2454.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9