网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于三维热加工图的6063铝合金型材挤压工艺优化
英文标题:Extrusion process optimization on 6063 aluminum alloy profile based on three-dimensional hot processing map
作者:郭爽爽1 2 黄志恒3 程少坤3 刘文文3 
单位:1. 太原重型机械集团有限公司 山西 太原 030024 2. 太重(天津)滨海重型机械有限公司 天津 300457 3. 太原理工大学 机械工程学院 山西 太原 030024 
关键词:6063铝合金 挤压型材 Arrhenius模型 本构方程 三维热加工图 
分类号:TG146.2
出版年,卷(期):页码:2025,50(6):120-128
摘要:

为了获得6063铝合金的优化挤压工艺参数,实现其成形质量的均匀性和成形的高效性,同时,考虑到挤压过程中温度对挤压产品成品率具有较大影响,采用30 ℃的温度间隔在Gleeble-3800动态模拟压缩试验机上进行6063铝合金的等温热压缩实验,获得了变形温度为450~570 ℃、应变速率为1~20 s-1条件下的真应力-真应变曲线,建立了基于Arrhenius模型的本构方程,结合Prasad理论建立了三维热加工图,并进行了工艺优化。结果表明:考虑应变的本构方程的预测值和实验值的相关系数r2为0.97935、平均绝对相对误差AARE为4.669%,而三维热加工图的分析表明,6063铝合金适宜的热加工条件为高温低应变速率和低温高应变速率,合理的挤压温度范围为480~530 ℃。研究结果表明,建立的本构方程可以为挤压设备设计阶段的力能参数评估提供指导,而三维热加工图可以为铝合金型材挤压工艺参数优化提供借鉴。

In order to obtain the optimized extrusion process parameters of 6063 aluminum alloy and realize the uniformity of forming quality and high forming efficiency, at the same time, considering that the temperature in the extrusion process had significant influence on the yield of extruded products, the isothermal hot compression test of 6063 aluminum alloy was carried out on dynamic simulation compression tester Gleeble-3800 with a temperature interval of 30 ℃, and the true stress-true strain curves under the conditions that the temperature of 450-570 ℃ and strain the rate of 1-20 s-1 were obtained. Then, the constitutive equation based on the Arrhenius model was established, the three-dimensional hot processing map was established, and the process optimization was conducted by combining the Prasad theory. The results show that the correlation coefficient r2 between the predicted and test values of the constitutive equation considering strain is 0.97935, and the average absolute relative error AARE is 4.669%. The three-dimensional hot processing map analysis shows that the suitable hot processing conditions for 6063 aluminum alloy are high temperature and low strain rate, and low temperature and high strain rate, and the reasonable extrusion temperature range is 480-530 ℃. The research results show that the established constitutive equation can provide guidance for the evaluation of force and energy parameters in the design stage of extrusion equipment, and the three-dimensional hot processing map can provide reference for the optimization of extrusion process parameters of aluminum alloy profiles.

基金项目:
国家重点研发计划(2024YFB3714301);山西省基础研究计划联合资助项目(太重)产业发展类重点项目(TZLH2023-0818006);国家自然科学基金青年科学基金资助项目(52005361);中央引导地方科技发展资金项目(YDZJSX2022A022);中国博士后科学基金特别资助项目(2023T160474)
作者简介:
作者简介:郭爽爽(1984-),男,硕士,高级工程师,E-mail:1115329758@qq.com;通信作者:刘文文(1990-),男,博士,副教授,E-mail:liuwenwen@tyut.edu.cn
参考文献:

[1]Chang Z Q, Liu L W, Li Y, et al. Effect of aging temperature on pitting corrosion of AA6063 aluminum alloy[J]. Metals and Materials International, 2024, 30(6): 1556-1570.


 

[2]Dubey R, Jayaganthan R, Ruan D, et al. Energy absorption and dynamic behaviour of 6xxx series aluminium alloys: A review[J]. International Journal of Impact Engineering, 2023, 172: 104397.

 

[3]Shen W J, Xue F M, Li C Z, et al. Study on constitutive relationship of 6061 aluminum alloy based on Johnson-Cook model[J]. Materials Today Communications, 2023, 37: 106982.

 

[4]赵国群,孙宇彤,喻俊荃. 铝合金型材挤压弯曲一体化成形技术研究进展[J]. 塑性工程学报,2024, 31(4): 46-55.

 

Zhao G Q, Sun Y T, Yu J Q. Research progress on extrusion-bending integrated forming technology of aluminum alloy profiles[J]. Journal of Plasticity Engineering, 2024, 31(4): 46-55.

 

[5]季策,吴晋,李子轩,等. 45/316L复合管三辊斜轧组元金属变形规律研究[J]. 机械工程学报,2024, 60(20): 77-87.

 

Ji C, Wu J, Li Z X, et al. Study on component metal deformation law of 45/316L cladding tubes in three-roll skew rolling bonding process[J]. Journal of Mechanical Engineering,2024, 60(20): 77-87.

 

[6]sterreicher J A, Cerny A, Arnoldt A R, et al. A systematic through-process rolling and extrusion study of four experimental high-strength Al-Mg-Si alloys[J]. Results in Engineering, 2024, 23: 102384.

 

[7]Les'niak D, Zasadziński J, Libura W, et al. Latest advances in extrusion processes of light metals[J]. Archives of Civil and Mechanical Engineering, 2024, 24(3): 184.

 

[8]Savaedi Z, Motallebi R, Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 903: 163964.

 

[9]Eleti R R, Bhattacharjee T, Zhao L J, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy[J]. Materials Chemistry and Physics,2018, 210: 176-186.

 

[10]张志红,刘洁. 304不锈钢的热变形行为及热加工图[J]. 锻压技术,2024, 49(11): 202-209.

 

Zhang Z H, Liu J. Hot deformation behavior and hot processing map on 304 stainless steel[J]. Forging & Stamping Technology,2024, 49(11): 202-209.

 

[11]王永红,王经涛,黄同瑊,等.均质态7475铝合金的热变形行为[J]. 锻压技术,2024,49(10): 248-255.

 

Wang Y H, Wang J T, Huang T J, et al. Thermal deformation behavior of homogeneous 7475 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(10): 248-255.

 

[12]Liu Q, Li J B, Liu J G, et al. Modeling the flow behavior of wire arc additive manufactured steel over a wide range of strain rates and temperatures[J]. Metallurgical and Materials Transactions B,2024, 55(5): 3679-3697.

 

[13]Kareem S A, Anaele J U, Olanrewaju O F, et al. Insights into hot deformation of medium entropy alloys: Softening mechanisms, microstructural evolution, and constitutive modelling-A comprehensive review[J]. Journal of Materials Research and Technology,2024, 29: 5369-5401.

 

[14]Prasad Y V R K, Rao K P, Sasidhar S S. Hot Working Guide: A Compendium of Processing Maps[M]. Ohio, USA:ASM International, 2015.

 

[15]Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map[J]. Vacuum, 2019, 159: 447-455.

 

[16]Lin C N, Tzeng Y C, Lee S L, et al. Optimization of hot deformation processing parameters for as-extruded 7005 alloys through the integration of 3D processing maps and FEM numerical simulation[J]. Journal of Alloys and Compounds,2023, 948: 169804.

 

[17]曾健,董帅,王锋华,等. 基于三维加工图的AZ31与GW83镁合金热加工可成形性对比研究[J]. 塑性工程学报, 2025,32(1): 177-184.

 

Zeng J, Dong S, Wang F H, et al. Comparative study on hot processing formability of AZ31 and GW83 magnesium alloys based on 3D processing map[J]. Journal of Plasticity Engineering, 2025,32(1): 177-184.

 

[18]Wu R H, Liu Y, Geng C, et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map[J]. Journal of Alloys and Compounds, 2017, 713: 212-221.

 

[19]Huang Y C, Liu L C, Xiao Z B, et al. Hot deformation behavior of 6063 aluminum alloy studied using processing maps and microstructural analysis[J]. Physics of Metals and Metallography,2019, 120(11): 1115-1125.

 

[20]卞东伟. 6063铝合金微观组织演变多尺度本构建模研究[D]. 银川:宁夏大学, 2019.

 

Bian D W. Study on Multi-scale Constructive Modeling of Microstructure Evolution of 6063 Aluminum Alloy[D]. Yinchuan:Ningxia University, 2019.

 

[21]余珠华, 张大童, 张文, 等. 均匀化处理的6063铝合金的热压缩变形行为及组织演变[J]. 热加工工艺, 2018, 47 (5): 58-61,67.

 

Yu Z H,Zhang D T,Zhang W,et al. Hot compression deformation behaviors and microstructure evolution of 6063 aluminum alloy treated by homogenization[J]. Hot Working Technology, 2018, 47 (5): 58-61,67.

 

[22]Li J C, Wu X D, Cao L F, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy[J]. Materials Characterization,2021, 173: 110976.

 

[23]Chen Z Q, Xu L J, Cao S Z, et al. Characterization of hot deformation and microstructure evolution of a new metastable β titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1513-1529.

 

[24]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944, 15(1): 22-32.

 

[25]洪浩洋,杜向阳,颜志刚. 6063-T5铝合金热变形行为及热加工图研究[J]. 轻工学报, 2021, 36 (4): 86-96,104.

 

Hong H Y,Du X Y,Yan Z G. Study on hot deformation behavior and hot processing map of 6063-T5 aluminum alloy[J]. Journal of Light Industry, 2021, 36 (4): 86-96,104.

 

[26]Prasad Y V R K,Gegel H L,Doraivelu S M,et al.Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J].Metallurgical and Materials Transactions A,1984,15(10):1883-1892.

 

[27]Prasad Y V R K. Processing maps: A status report[J]. Journal of Materials Engineering and Performance,2003, 12(6): 638-645.

 

[28]Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development[J]. Materials Characterization,2015, 107:293-301.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9