网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH4169高温合金高温低周疲劳行为及Chaboche本构分析
英文标题:High temperature and low cycle fatigue behavior and Chaboche constitutive analysis on superalloy GH4169
作者:方舟 吴英弘 王维民 
单位:北京化工大学 机电工程学院 北京 100029 
关键词:GH4169高温合金 低周疲劳 单调拉伸 循环载荷 Masing特性 
分类号:TG131
出版年,卷(期):页码:2025,50(6):204-213
摘要:

针对GH4169高温合金,开展了高温单调拉伸以及高温低周疲劳试验,研究了其力学响应行为。结果表明,在较低应变幅(0.6%)下,合金并未出现明显软化特征,反而在循环后期出现了较小硬化现象,在较高应变幅(0.8%、1.0%和1.2%)下,呈现出较明显的硬化特征。Manson-Confin曲线拟合分析结果显示,合金的总应变幅由塑性应变决定,不符合Manson-Confin的双线性特点。Romberg-Osgood 模型拟合结果表明,循环加载下材料硬化能力显著高于单调拉伸。Masing特性研究结果显示,随着应变幅的增大,合金的Non-Masing特征愈加明显。最后,基于试验数据,拟合了 Chaboche 混合硬化模型参数,并通过 Abaqus 有限元仿真验证了其准确性。研究结果为 GH4169 高温合金的复杂工况仿真提供了可靠的本构模型参数依据。

For superalloy GH4169, high-temperature monotonic tensile and high-temperature low-cycle fatigue tests were conducted, and its mechanical response behavior was studied. The results show that at a low strain amplitude of 0.6%, the alloy does not show obvious softening characteristics, but instead shows a small hardening phenomenon in the later stage of the cycle. At higher strain amplitudes (0.8%, 1.0% and 1.2%), it shows a more obvious hardening characteristic. Manson-Coffin curve fitting analysis results indicates that the total strain amplitude of alloy is determined by the plastic strain, which does not conform to the bilinear characteristics of Manson-Coffin. The Romberg-Osgood model fitting results show that the hardening ability of the material under cyclic loading is significantly higher than that under monotonic tensile. The results of Masing characteristics study show that with the increasing of the strain amplitude, the Non-Masing characteristics of the alloy become more obvious. Finally, based on the test data, the Chaboche mixed hardening model parameters are fitted, and the accuracy is verified by Abaqus finite element simulation. Thus, the research results provide a reliable constitutive model parameters basis for complex working condition simulation of superalloy GH4169.

基金项目:
国家自然科学基金重点项目(92160203);国家重点研发计划项目 (2020YFB2010803);中央高校人才基金(buctrc202026)
作者简介:
作者简介:方舟(1984-),女,博士,教授,硕士生导师,E-mail:zhoufang@buct.edu.cn;通信作者:王维民(1978-),男,博士,教授,博士生导师,E-mail:2006500088@buct.edu.cn
参考文献:

[1]Fan M L, Qu M M, Chen C Y, et al. Effect of initial overload on the low cycle fatigue life of GH4169 alloy at different temperatures[J]. International Journal of Fatigue, 2024, 186:108424.


 

[2]Li S M, Zhang H J, Xing Z Y, et al. A study of fretting fatigue in a contact pair of DZ125/GH4169: Its mechanical behavior and life prediction[J]. Tribology International, 2024, 196:109707.

 

[3]Wang Z G, Chen T L, Gong J N, et al. Improvement in fretting fatigue life of GH4169 dovetail joint component by bonded solid lubricant coating at 500 ℃[J]. Tribology International, 2024, 193:109415.

 

[4]Prager W.A new method of analyzing stresses and strains in work-hardening plastic solids[J]. Journal of Applied Mechanics, 1956, 23 (4): 493-496.

 

[5]Frederick C O,Armstrong P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures,2007,24(1): 1-26.

 

[6]Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24(10): 1642-1693.

 

[7]Chaboche J L, Kanouté P, Azzouz F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions[J]. International Journal of Plasticity, 2012, 35: 44-66.

 

[8]Burlet H, Cailletaud G. Numerical techniques for cyclic plasticity at variable temperature[J]. Engineering Computations, 1986, 3(2): 143-153.

 

[9]Ohno N,Wang J D. Kinematic hardening rules with critical state of dynamic recovery,part II:Application to experiments of ratchetting behavior[J]. International Journal of Plasticity, 1993, 9(3): 391-403.

 

[10]McDowell D L. Stress state dependence of cyclic ratchetting behavior of two rail steels[J]. International Journal of Plasticity, 1995, 11(4): 397-421.

 

[11]GB/T 228.2—2015,金属材料拉伸试验第2部分: 高温试验方法[S].

 

GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature[S].

 

[12]GB 145—2001,中心孔[S].

 

GB 145—2001,Center holes[S].

 

[13]Xu L Y, Nie X, Fan J S, et al. Cyclic hardening and softening behavior of the low yield point steel BLY160: Experimental response and constitutive modeling[J]. International Journal of Plasticity, 2016, 78: 44-63.

 

[14]Nikulin I, Sawaguchi T, Kushibe A, et al. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy[J]. International Journal of Fatigue, 2016, 88: 132-141.

 

[15]Goyal S, Mandal S, Parameswaran P, et al. A comparative assessment of fatigue deformation behavior of 316 LN SS at ambient and high temperature[J]. Materials Science and Engineering: A, 2017, 696: 407-415.

 

[16]Arora P, Gupta S K, Bhasin V, et al. Testing and assessment of fatigue life prediction models for Indian PHWRs piping material under multi-axial load cycling[J]. International Journal of Fatigue, 2016, 85:98-113.

 

[17]Mughrabi H,Christ H J. Cyclic deformation and fatigue of selected ferritic and austenitic steels: Specific aspects[J]. ISIJ International, 1997, 37(12): 1154-1169.

 

[18]Liu S J, Liang G Z, Yang Y C. A strategy to fast determine Chaboche elasto-plastic model parameters by considering ratcheting[J]. International Journal of Pressure Vessels and Piping,2019, 172: 251-260.

 

[19]Wang R Z, Zhang X C, Gong J G,et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 ℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97: 114-123.

 

[20]Chaboche J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2): 149-188.

 

[21]Chaboche J L. On some modifications of kinematic hardening to improve the description of ratchetting effects[J].International Journal of Plasticity, 1991, 7 (7): 661-678.

 

[22]Kang G Z, Gao Q, Yang X J. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature[J]. Mechanics of Materials, 2002, 34(9), 521-531.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9