[1]Fan M L, Qu M M, Chen C Y, et al. Effect of initial overload on the low cycle fatigue life of GH4169 alloy at different temperatures[J]. International Journal of Fatigue, 2024, 186:108424.
[2]Li S M, Zhang H J, Xing Z Y, et al. A study of fretting fatigue in a contact pair of DZ125/GH4169: Its mechanical behavior and life prediction[J]. Tribology International, 2024, 196:109707.
[3]Wang Z G, Chen T L, Gong J N, et al. Improvement in fretting fatigue life of GH4169 dovetail joint component by bonded solid lubricant coating at 500 ℃[J]. Tribology International, 2024, 193:109415.
[4]Prager W.A new method of analyzing stresses and strains in work-hardening plastic solids[J]. Journal of Applied Mechanics, 1956, 23 (4): 493-496.
[5]Frederick C O,Armstrong P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures,2007,24(1): 1-26.
[6]Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24(10): 1642-1693.
[7]Chaboche J L, Kanouté P, Azzouz F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions[J]. International Journal of Plasticity, 2012, 35: 44-66.
[8]Burlet H, Cailletaud G. Numerical techniques for cyclic plasticity at variable temperature[J]. Engineering Computations, 1986, 3(2): 143-153.
[9]Ohno N,Wang J D. Kinematic hardening rules with critical state of dynamic recovery,part II:Application to experiments of ratchetting behavior[J]. International Journal of Plasticity, 1993, 9(3): 391-403.
[10]McDowell D L. Stress state dependence of cyclic ratchetting behavior of two rail steels[J]. International Journal of Plasticity, 1995, 11(4): 397-421.
[11]GB/T 228.2—2015,金属材料拉伸试验第2部分: 高温试验方法[S].
GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature[S].
[12]GB 145—2001,中心孔[S].
GB 145—2001,Center holes[S].
[13]Xu L Y, Nie X, Fan J S, et al. Cyclic hardening and softening behavior of the low yield point steel BLY160: Experimental response and constitutive modeling[J]. International Journal of Plasticity, 2016, 78: 44-63.
[14]Nikulin I, Sawaguchi T, Kushibe A, et al. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy[J]. International Journal of Fatigue, 2016, 88: 132-141.
[15]Goyal S, Mandal S, Parameswaran P, et al. A comparative assessment of fatigue deformation behavior of 316 LN SS at ambient and high temperature[J]. Materials Science and Engineering: A, 2017, 696: 407-415.
[16]Arora P, Gupta S K, Bhasin V, et al. Testing and assessment of fatigue life prediction models for Indian PHWRs piping material under multi-axial load cycling[J]. International Journal of Fatigue, 2016, 85:98-113.
[17]Mughrabi H,Christ H J. Cyclic deformation and fatigue of selected ferritic and austenitic steels: Specific aspects[J]. ISIJ International, 1997, 37(12): 1154-1169.
[18]Liu S J, Liang G Z, Yang Y C. A strategy to fast determine Chaboche elasto-plastic model parameters by considering ratcheting[J]. International Journal of Pressure Vessels and Piping,2019, 172: 251-260.
[19]Wang R Z, Zhang X C, Gong J G,et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 ℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97: 114-123.
[20]Chaboche J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2): 149-188.
[21]Chaboche J L. On some modifications of kinematic hardening to improve the description of ratchetting effects[J].International Journal of Plasticity, 1991, 7 (7): 661-678.
[22]Kang G Z, Gao Q, Yang X J. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature[J]. Mechanics of Materials, 2002, 34(9), 521-531.
|