网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
300M超高强钢高温热变形行为及显微组织
英文标题:High temperature hot deformation behavior and microstructure of 300M ultra-high strength steel
作者:许瑜倩 
单位:安徽工业大学 冶金工程学院 安徽 马鞍山 243000 
关键词:300M超高强钢 热变形行为 本构方程 动态再结晶 流变应力 
分类号:TG142
出版年,卷(期):页码:2025,50(6):221-233
摘要:

采用Gleeble-3800热模拟试验机在950~1050 ℃变形温度范围及0.01~0.1 s-1应变速率条件下对300M超高强钢进行热压缩实验。基于动态材料模型建立了应变补偿本构方程,研究了实验钢在高温下的热变形行为。采用电子背散射衍射技术结合ARPGE晶体学分析软件,研究了不同变形条件下超高强钢的显微组织演变规律。结果表明,在实验温度范围内,温度升高通过促进动态回复降低位错密度,导致流变应力下降;而应变速率增加引起几何必要位错密度增加,致使流变应力上升。晶体学分析揭示了协调塑性变形模式下马氏体变体呈现显著取向择优特性。此外,300M超高强钢的热变形激活能为353.37 kJ·mol-1,建立的本构方程相关系数达到0.99703,平均相对误差仅为1.80%,表明该方程能够有效预测不同变形条件下300M超高强钢的流变应力。

The hot compression experiments of 300M ultra-high strength steel was conducted on the Gleeble-3800 thermal simulation experimental machine at the deformation temperature of 950-1050 ℃ and the strain rate of 0.01-0.1 s-1. Then, based on the dynamic material model, the strain compensation constitutive equation was established, and the hot deformation behavior of experimental steel at high temperatures was studied. Furthermore, the microstructure evolution laws of ultra-high strength steel under different deformation conditions were studied by electron backscatter diffraction technology combined with ARPGE crystallographic analysis software. The results indicate that within the experimental temperature range, the increase in temperature reduces dislocation density by promoting dynamic recovery, resulting in a decrease in the rheological stress. While the increase in strain rate leads to an increase in geometrically necessary dislocation density, resulting in an increase in the rheological stress. Crystallographic analysis reveals that the martensite variants exhibit significant orientation preference characteristics under coordinated plastic deformation mode. In addition, the hot deformation activation energy of 300M ultra-high strength steel is 353.37 kJ·mol-1, the correlation coefficient of the established constitutive equation reaches 0.99703, and the average relative error is only 1.80%, indicating that the equation can effectively predict the rheological stress under different deformation conditions.

基金项目:
作者简介:
作者简介:许瑜倩(2004-),女,本科生,E-mail:18434464504@163.com
参考文献:

[1]张慧萍,王崇勋,杜煦. 飞机起落架用300M超高强钢发展及研究现状[J]. 哈尔滨理工大学学报,2011,16(6):73-76.


 

Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra high strength steel and research [J]. Journal of Harbin University of Science and Technology, 2011, 16 (6): 73-76.

 

[2]张海成,肖细军,曾德涛. 飞机起落架用300M超高强度钢的表面脱碳行为研究[J]. 热加工工艺,2024,53(12):120-124,128.

 

Zhang H C, Xiao X J, Zeng D T. Research on surface decarburization behavior of 300M ultra high strength steel for aircraft landing gear [J]. Hot Working Technology, 2024, 53 (12): 120-124,128.

 

[3]赵明杰,黄亮,李建军,等. 300M钢热扭转变形条件下的变形行为研究[J]. 塑性工程学报,2020,27(11):159-166.

 

Zhao M J, Huang L, Li J J, et al. Deformation behaviors of 300M steel under hot torsion [J]. Journal of Plasticity Engineering, 2020, 27 (11): 159-166.

 

[4]刘凯. 300M钢的热态变形特性及其动态再结晶模型研究[D]. 南昌:南昌航空大学,2012.

 

Liu K. Investigation on Hot Deformation Feature and Dynamic Recrystallization Models of 300M Steel [D]. Nanchang: Nanchang University of Aeronautics and Astronautics, 2012.

 

[5]袁培柏. 300M钢制飞机起落架零件的真空淬火[J]. 金属热处理,1991,16(10):29-33.

 

Yuan P B. Vacuum quenching of 300M steel aircraft landing gear parts [J]. Heat Treatment of Metals, 1991,16(10): 29-33.

 

[6]石旭. 300M超高强钢高温本构模型的研究[D]. 哈尔滨:哈尔滨理工大学,2015. 

 

Shi X. Research on the High Temperature Constitutive Model of 300M Ultra-high Strength Steel [D]. Harbin: Harbin University of Science and Technology, 2015.

 

[7]章晓婷,黄亮,李建军,等. 300M高强钢高温流变行为及本构方程[J]. 中南大学学报(自然科学版),2017,48(6):1439-1447.

 

Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature [J]. Journal of Central South University (Science and Technology), 2017, 48 (6): 1439-1447.

 

[8]刘宁,旷五洲,陈俊.含钒高锰LNG储罐用钢热变形行为及组织演变研究[J].轧钢,2023,40(5):25-31,46.

 

Liu N, Kuang W Z, Chen J. Study on hot deformation behaviors and microstructure evolution of V-bearing high Mn steel for LNG tank [J]. Steel Rolling, 2023, 40 (5): 25-31,46.

 

[9]霍巍丰,宋仁伯,张宇,等.Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb中锰钢的热变形行为研究[J].轧钢,2023,40(1):17-22.

 

Huo W F, Song R B, Zhang Y, et al. Research on hot deformation behavior of Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb medium Mn steel [J]. Steel Rolling, 2023, 40 (1): 17-22.

 

[10]曹建国,王天聪,李洪波,等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J].机械工程学报,2016,52(4):90-96,102.

 

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering, 2016, 52 (4): 90-96,102.

 

[11]李清阳,蔡军,樊昱,等. GH3625高温合金热变形行为及修正非线性本构模型[J].塑性工程学报,2025,32(2):172-178.

 

Li Q Y, Cai J, Fan Y, et al. Thermal deformation behavior and modified nonlinear constitutive model of GH3625 superalloy [J]. Journal of Plasticity Engineering, 2025, 32 (2): 172-178.

 

[12]毛欢,韩莹莹. 基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J].铸造技术,2018,39(9):1939-1942,1947.

 

Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated Arrhenius model [J]. Foundry Technology, 2018, 39 (9): 1939-1942,1947.

 

[13]杨合,孙志超,林艳,等. 管成形技术发展基础问题研究[J]. 塑性工程学报,2001,8(2):83-85.

 

Yang H, Sun Z C, Lin Y, et al. Advanced plastic processing technology and research progress on tube forming [J]. Journal of Plasticity Engineering, 2001, 8 (2): 83-85.

 

[14]刘凯,鲁世强,欧阳德来,等. 300M钢动态再结晶动力学[J]. 塑性工程学报,2012,19(3):82-87,113.

 

Liu K, Lu S Q, Ouyang D L, et al. Investigation on dynamic recrystallization kinetics of 300M steel [J]. Journal of Plasticity Engineering, 2012, 19 (3): 82-87,113.

 

[15]丁文圆,宋庆华,赵飞,等. CLAM钢的热变形行为及热加工图[J]. 原子能科学技术,2018,52(6):1077-1084.

 

Ding W Y, Song Q H, Zhao F, et al. Hot deformation behavior and processing map of CLAM steel [J]. Atomic Energy Science and Technology, 2018, 52 (6): 1077-1084.

 

[16]黄顺喆,厉勇,王春旭,等. 300M钢的热变形行为研究[J]. 热加工工艺,2010,39(20):25-28.

 

Huang S Z, Li Y, Wang C X, et al. Investigation on hot deformation behavior of 300M steel [J]. Hot Working Technology, 2010, 39 (20): 25-28.

 

[17]刘修苹,杨素媛,李先雨,等. M54超强钢的热变形行为及显微组织研究[J]. 兵器材料科学与工程,2023,46(2):1-6.

 

Liu X P, Yang S Y, Li X Y, et al. Hot deformation behavior and microstructure of M54 ultra-strength steel [J]. Ordnance Material Science and Engineering, 2023, 46 (2): 1-6.

 

[18]马少伟,张艳,杨明,等. Zener-Hollomon参数对Cr4Mo4Ni4V高合金钢热变形行为的影响[J]. 中南大学学报(自然科学版),2021,52(2):376-388.

 

Ma S W, Zhang Y, Yang M, et al. Effect of Zener-Hollomon parameters on hot deformation behavior of Cr4Mo4Ni4V high alloy steel [J]. Journal of Central South University (Science and Technology), 2021, 52 (2): 376-388.

 

[19]孙佳伟,陈学文,苏志毅,等. SA-765 Gr.Ⅱ钢的热变形行为及再结晶临界应变模型[J]. 材料热处理学报,2024,45(5):152-160.

 

Sun J W, Chen X W, Su Z Y, et al. Hot deformation behavior and recrystallization critical strain model of SA-765 Gr.Ⅱ steel[J]. Transactions of Materials and Heat Treatment, 2024, 45 (5): 152-160.

 

[20]Najafizadeh A,Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International,2006,46(11):1679-1684.

 

[21]呙程祥,王家昌,张明磊,等. H13模具钢的热变形行为及本构模型建立[J]. 锻压技术,2024,49(10):221-229.

 

Guo C X, Wang J C, Zhang M L, et al. Hot deformation behavior and establishment of constitutive model for H13 die steel [J]. Forging & Stamping Technology, 2024, 49 (10): 221-229.

 

[22]Wei G B, Peng X D, Hu F P, et al. Deformation behavior and constitutive model for dual-phase Mg-Li alloy at elevated temperatures [J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (2): 508-518.

 

[23]金皓,李全,金朝阳. 基于Johnson-Cook模型的AZ80镁合金热变形行为[J].塑性工程学报,2021,28(11):150-157. 

 

Jin H, Li Q, Jin C Y. Thermal deformation behavior of AZ80 magnesium alloy based on Johnson-Cook model [J]. Journal of Plasticity Engineering, 2021, 28 (11): 150-157.

 

[24]田畅. 中锰钢的奥氏体调控与Cu析出行为研究[D].北京:北京科技大学,2022.

 

Tian C. Study on Austenite Adjustment and Cu Precipitation in Medium Mn Steels [D]. Beijing:University of Science and Technology Beijing, 2022.

 

[25]杨劼,任慧平,王海燕,等. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报,2024,38(9):212-219.

 

Yang J, Ren H P, Wang H Y, et al. Selection of isothermal quenching variants and quantitative characterization of special crystal faces of low carbon bainite steels [J]. Materials Reports, 2024, 38 (9): 212-219.

 

[26]Cayron C. One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation [J]. Acta Crystallographica Section A: Foundations and Advances, 2013, 69(5): 498-509.

 

[27]高野,任家宽,李志峰,等. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报,2022,36(1):21-28.

 

Gao Y, Ren J K, Li Z F, et al. Effect of austenitizing temperature on microstructure and crystallographic evolution of 900 MPa grade HSLA steel [J]. Chinese Journal of Materials Research, 2022, 36 (1): 21-28.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9