网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al-Zn-Mg-Cu铝合金高温本构方程与热加工图
英文标题:High-temperature constitutive equation and hot processing map for Al-Zn-Mg-Cu aluminum alloy
作者:徐槿昊 龙亚 
单位:浙江交通职业技术学院 轨道交通学院 浙江 杭州 311112 
关键词:Al-Zn-Mg-Cu铝合金 等温热压缩 本构方程 热加工图 微观组织 
分类号:TG146.2;TG316
出版年,卷(期):页码:2025,50(6):259-267
摘要:

为了研究Al-Zn-Mg-Cu铝合金的高温本构方程及加工工艺窗口,首先,使用Gleeble-3500热模拟试验机对Al-Zn-Mg-Cu铝合金进行了等温热压缩实验,研究了其在变形温度为623~773 K、应变速率为0.001~1 s-1条件下的高温流变特性。其次,利用高阶梯度信息建立了该合金的高精度新本构方程,并基于该方程推导了热加工图的计算模型。最后,通过典型区域的金相实验验证了热加工图的合理性。热压缩曲线表明,在低应变速率条件下,该铝合金的应力随着应变的增加先迅速上升后缓慢下降最终趋于稳定;在高应变速率条件下,应力先迅速上升后急剧下降而后缓慢上升最后再缓慢下降至稳定。偏导数分析表明,lnσ与lnε·之间采用2阶逼近、lnσ与T之间采用1阶逼近,可构建精度高、参数少的本构方程。热加工图及金相分析表明,稳定的热加工窗口为:应变速率为0.001~0.035 s-1、变形温度为623~773 K。

To investigate the high-temperature constitutive relationship and hot processing window of Al-Zn-Mg-Cu aluminum alloy, firstly, the isothermal hot compression test of Al-Zn-Mg-Cu aluminum alloy was conducted by thermal simulation machine Gleeble-3500, and its high-temperature rheological properties under the deformation temperature of 623-773 K and the strain rates of 0.001-1 s-1 were studied. Secondly, a new high-precision constitutive equation of the alloy was established by high-order gradient information, and the calculation model of the hot processing map was derived based on this equation. Finally, the rationality of the hot processing map was verified by metallographic tests in typical regions. The hot compression curves indicate that under low strain rate conditions, the stress of the aluminum alloy first rises rapidly and then slowly decreases and finally stabilizes with the increasing of strain. Under high strain rate conditions, the stress first rises rapidly and then drops sharply, followed by a slow increase, and finally slowly decreases to stability. Partial derivative analysis reveals that the second-order approximation between lnσ and lnε· and the first-order approximation between lnσ and T can construct a constitutive equation with high accurate and few parameters. Hot processing map and metallographic analysis demonstrate that the stable hot processing window is the strain rate of 0.001-0.035 s-1 and the deformation temperature of 623-773 K.

基金项目:
浙江省教育厅一般科研项目(Y202352134)
作者简介:
作者简介:徐槿昊(1989-),女,硕士,讲师,E-mail:olivia8907@163.com
参考文献:

[1]陈天宇,章宇豪,王芝秀,等. Zn含量对Al-Mg-Si-Cu合金拉伸性能及晶间腐蚀敏感性的影响[J].稀有金属,2023,47(4):484-492.


 

Chen T Y,Zhang Y H,Wang Z X,et al. Tensile properties and intergranular corrosion sensitivity of Al-Mg-Si-Cu alloy with different Zn contents[J]. Chinese Journal of Rare Metals,2023,47(4):484-492.

 

[2]李棠旭, 李婷, 刘越鹏, 等. 7X75系列铝合金的发展与展望[J]. 轻合金加工技术, 2023,51(10):1-7.

 

Li T X, Li T, Liu Y P, et al. Review on research progress of 7X75 series aluminum alloys[J]. Light Alloy Fabrication Technology, 2023,51(10):1-7.

 

[3]师晓宁, 刘一笑. 热处理工艺对挤压7175铝合金组织性能的影响[J]. 锻压技术, 2024, 49(2):234-240.

 

Shi X N, Liu Y X. Influence of heat treatment process on microstructure and properties extruded 7175 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(2):234-240.

 

[4]文超, 朱正锋, 王群, 等. 7×××系超高强铝合金在我国轨道交通车辆的研究应用现状与展望[J]. 金属热处理, 2024, 49(3):302-312.

 

Wen C, Zhu Z F, Wang Q, et al. Research application status and prospect of 7××× series ultra-high strength aluminum alloy in rail transit vehicles in China[J]. Heat Treatment of Metals, 2024, 49(3):302-312.

 

[5]袁松阳. 7075铝合金常规挤压铸造与流变挤压铸造微观组织和力学性能研究[D]. 上海:上海交通大学, 2019.

 

Yuan S Y. Study on Microstructure and Mechanical Properties of Conventional Squeeze Casting and Rheo-squeeze Casting 7075 Aluminum Alloy[D]. Shanghai:Shanghai Jiao Tong University, 2019.

 

[6]张王军, 李云, 吴玉娜, 等.超高强7XXX系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3):52-60,84.

 

Zhang W J, Li Y, Wu Y N, et al. A critical review of the state-of-the-art of ultra-high strength 7XXX aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3):52-60,84.

 

[7]金明, 张晋源. 7050铝合金流变模型及稳态热加工工艺研究[J]. 锻压技术, 2024, 49(2):255-264.

 

Jin M, Zhang J Y. Study on rheological model and steady hot working process of 7050 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(2):255-264.

 

[8]杨成曦, 王姝俨, 吴道祥. 锻态7050铝合金修正JC本构模型建立与模拟应用[J]. 铝加工, 2022(4):47-51.

 

Yang C X, Wang S Y, Wu D X. Construction and simulation application of modified Johnson-Cook constitutive model for forged 7050 aluminum alloy[J]. Aluminium Fabrication, 2022(4):47-51.

 

[9]郑许, 彭斐, 朱玉涛, 等. 一种Al-Zn-Mg-Cu铝合金的热压缩变形行为及微观组织演变[J]. 轻金属, 2022(2):40-46.

 

Zheng X, Peng F, Zhu Y T, et al. Hot compression deformation behavior and microstructure evolution of an Al-Zn-Mg-Cu aluminum alloy[J]. Light Metals, 2022(2):40-46.

 

[10]王永红, 陈彦龙, 朱鑫, 等. 7175铝合金热变形行为与热加工图[J]. 塑性工程学报, 2024, 31(1):216-222.

 

Wang Y H, Chen Y L, Zhu X, et al. Hot deformation behaviors and hot processing maps of 7175 aluminum alloy[J]. Journal of Plasticity Engineering, 2024, 31(1):216-222.

 

[11]彭宇, 杨程, 彭迎娇, 等. 7075-T6高强铝合金温热变形本构方程及热加工图[J]. 锻压技术, 2023, 48(9):230-238.

 

Peng Y, Yang C, Peng Y J, et al. Warm deformation constitutive equation and thermal processing map of 7075-T6 high strength aluminum alloy[J]. Forging & Stamping Technology, 2023, 48(9):230-238.

 

[12]Richardson G J, Sellars C M, Tegart W J M. Recrystallization during creep of nickel [J]. Acta Metallurgica, 1966, 14(10):1225-1236.

 

[13]Wang J,Xiao G Q, Zhang J S. A new constitutive model and hot processing map of 5A06 aluminum alloy based on high-temperature rheological behavior and higher-order gradients[J]. Materials Today Communications, 2023, 36:106502.

 

[14]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.

 

[15]Narayana Murty S V S, Nageswara Rao B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel [J]. Journal of Materials Processing Technology, 2005, 166(2): 268-278.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9