[1]陈天宇,章宇豪,王芝秀,等. Zn含量对Al-Mg-Si-Cu合金拉伸性能及晶间腐蚀敏感性的影响[J].稀有金属,2023,47(4):484-492.
Chen T Y,Zhang Y H,Wang Z X,et al. Tensile properties and intergranular corrosion sensitivity of Al-Mg-Si-Cu alloy with different Zn contents[J]. Chinese Journal of Rare Metals,2023,47(4):484-492.
[2]李棠旭, 李婷, 刘越鹏, 等. 7X75系列铝合金的发展与展望[J]. 轻合金加工技术, 2023,51(10):1-7.
Li T X, Li T, Liu Y P, et al. Review on research progress of 7X75 series aluminum alloys[J]. Light Alloy Fabrication Technology, 2023,51(10):1-7.
[3]师晓宁, 刘一笑. 热处理工艺对挤压7175铝合金组织性能的影响[J]. 锻压技术, 2024, 49(2):234-240.
Shi X N, Liu Y X. Influence of heat treatment process on microstructure and properties extruded 7175 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(2):234-240.
[4]文超, 朱正锋, 王群, 等. 7×××系超高强铝合金在我国轨道交通车辆的研究应用现状与展望[J]. 金属热处理, 2024, 49(3):302-312.
Wen C, Zhu Z F, Wang Q, et al. Research application status and prospect of 7××× series ultra-high strength aluminum alloy in rail transit vehicles in China[J]. Heat Treatment of Metals, 2024, 49(3):302-312.
[5]袁松阳. 7075铝合金常规挤压铸造与流变挤压铸造微观组织和力学性能研究[D]. 上海:上海交通大学, 2019.
Yuan S Y. Study on Microstructure and Mechanical Properties of Conventional Squeeze Casting and Rheo-squeeze Casting 7075 Aluminum Alloy[D]. Shanghai:Shanghai Jiao Tong University, 2019.
[6]张王军, 李云, 吴玉娜, 等.超高强7XXX系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3):52-60,84.
Zhang W J, Li Y, Wu Y N, et al. A critical review of the state-of-the-art of ultra-high strength 7XXX aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3):52-60,84.
[7]金明, 张晋源. 7050铝合金流变模型及稳态热加工工艺研究[J]. 锻压技术, 2024, 49(2):255-264.
Jin M, Zhang J Y. Study on rheological model and steady hot working process of 7050 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(2):255-264.
[8]杨成曦, 王姝俨, 吴道祥. 锻态7050铝合金修正JC本构模型建立与模拟应用[J]. 铝加工, 2022(4):47-51.
Yang C X, Wang S Y, Wu D X. Construction and simulation application of modified Johnson-Cook constitutive model for forged 7050 aluminum alloy[J]. Aluminium Fabrication, 2022(4):47-51.
[9]郑许, 彭斐, 朱玉涛, 等. 一种Al-Zn-Mg-Cu铝合金的热压缩变形行为及微观组织演变[J]. 轻金属, 2022(2):40-46.
Zheng X, Peng F, Zhu Y T, et al. Hot compression deformation behavior and microstructure evolution of an Al-Zn-Mg-Cu aluminum alloy[J]. Light Metals, 2022(2):40-46.
[10]王永红, 陈彦龙, 朱鑫, 等. 7175铝合金热变形行为与热加工图[J]. 塑性工程学报, 2024, 31(1):216-222.
Wang Y H, Chen Y L, Zhu X, et al. Hot deformation behaviors and hot processing maps of 7175 aluminum alloy[J]. Journal of Plasticity Engineering, 2024, 31(1):216-222.
[11]彭宇, 杨程, 彭迎娇, 等. 7075-T6高强铝合金温热变形本构方程及热加工图[J]. 锻压技术, 2023, 48(9):230-238.
Peng Y, Yang C, Peng Y J, et al. Warm deformation constitutive equation and thermal processing map of 7075-T6 high strength aluminum alloy[J]. Forging & Stamping Technology, 2023, 48(9):230-238.
[12]Richardson G J, Sellars C M, Tegart W J M. Recrystallization during creep of nickel [J]. Acta Metallurgica, 1966, 14(10):1225-1236.
[13]Wang J,Xiao G Q, Zhang J S. A new constitutive model and hot processing map of 5A06 aluminum alloy based on high-temperature rheological behavior and higher-order gradients[J]. Materials Today Communications, 2023, 36:106502.
[14]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
[15]Narayana Murty S V S, Nageswara Rao B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel [J]. Journal of Materials Processing Technology, 2005, 166(2): 268-278.
|