网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
一种新型多连杆高速精密冲床机构及其热效应
英文标题:A novel multi-link high-speed precision punch press mechanism and its thermal effect
作者:彭斌彬 任澳宁 徐伟宁 
单位:南京理工大学 机械工程学院 
关键词:冲床机构 发热功率 温度场 热变形 下死点 
分类号:TG316
出版年,卷(期):页码:2025,50(7):183-191
摘要:

 提出了一种具有水平对称性的多连杆高速精密冲床机构,该机构可以有效地提高冲压时的抗偏载能力并且能够通过调整副滑块的质量对竖直方向的惯性力进行平衡,其结构的对称性保证了运动副的发热左右对称,减少了水平方向的热不平衡对高速精密冲床机构精度的影响。分析了多连杆高速精密冲床机构的运动副类型,并对其接触形式进行了分类。基于发热主要部位(运动副)的接触面相对摩擦速度及负载大小和方向计算出每个运动副在空载和负载状态下的发热功率及发热位置,利用有限元软件对多连杆高速精密冲床整机的温度场和热变形进行了求解,得到冲床主副滑块在下死点位置时的热变形及随时间的变化规律,为该高速精密冲床后续的热平衡设计提供理论依据。

 A multi-link high-speed precision punch press mechanism with horizontal symmetry was proposed, which effectively improved the anti-biased load capacity during stamping and balanced the vertical inertia force by adjusting the mass of vice-slider. Simultaneously, the structural symmetry ensured that the heat generated by the kinematic pairs was symmetrically distributed on both sides, thereby reducing the influence of horizontal thermal imbalance on the precision of the mechanism. Then, the types of kinematic pairs in the multi-link high-speed precision punch press mechanism were analyzed, and their contact forms were classified. Furthermore, based on the relative frictional velocity of the contact surfaces for the main heat-generating parts (kinematic pairs) and the magnitude and direction of load, the heat dissipation power and location of each kinematic pair under no-load and load conditions were calculated. Finally, the temperature field and thermal deformation of the whole multi-link high-speed precision punch press were solved by finite element software, and the thermal deformation of the main and vice sliders at the bottom dead center position and its variation laws versus time were obtained, which provided the theoretical basis for the subsequent thermal balance design of the high-speed precision punch press.

基金项目:
国家自然科学基金资助项目(52175016)
作者简介:
作者简介:彭斌彬(1975-),男,博士,副教授 E-mail:pengbinbin2013@126.com
参考文献:

 [1]张号. 多连杆压力机结构优化设计研究[D].大连:大连理工大学,2023.


 


Zhang H. Research on Structural Optimization Design of Multilink Press [D]. Dalian: Dalian University of Technology, 2023.


 


[2]胡建宇. 对称多杆高速冲床机构设计及精度补偿研究[D]. 南京:南京理工大学,2016.


 


Hu J Y. Research on Mechanism Design and Accuracy Compensation of Symmetrical Multilink High-speed Punching Machine [D]. Nanjing: Nanjing University of Science and Technology, 2016.


 


[3]王向前. 杠杆式高速精密数控冲床机构的精度分析与设计[D]. 南京:南京理工大学,2017.


 


Wang X Q. Precision Analysis and Design of Lever Type Highspeed Precision CNC Punch Mechanism [D]. Nanjing: Nanjing University of Science and Technology, 2017.


 


[4]傅松. 对称杠杆式高速冲床机构动平衡及下死点动态精度补偿研究[D]. 南京:南京理工大学,2018.


 


Fu S. Research on Dynamic Balance and Bottom Dead Center Dynamic Accuracy Compensation of Symmetrical Lever Type High Speed Punch Mechanism [D]. Nanjing: Nanjing University of Science and Technology, 2018.


 


[5]周宇. 主被动复合驱动的高速精密冲床机构的设计研究[D] . 南京:南京理工大学,2015.


 


Zhou Y. Design and Research of High-speed Precision Punch Mechanism with Active and Passive Combined Drive [D]. Nanjing: Nanjing University of Science and Technology, 2015.


 


[6]陈浩,张蔚,权洁,等. 一种高速冲床主传动机构[P].中国:CN109435305A,2019-03-08.


 


Chen H, Zhang W, Quan J, et al. A highspeed punching machine main transmission mechanism[P]. China:CN109435305A, 2019-03-08.


 


[7]彭斌彬,孙冠群,王昭坤. 一种闭式多杆高速精密冲床机构[P].中国:CN109318518A,2019-02-12.


 


Peng B B, Sun G Q, Wang Z K. A closedtype multilink highspeed precision punching machine mechanism[P]. China:CN109318518A,2019-02-12.


 


[8]彭斌彬,史典盛,胡荣. 一种双杠杆高速精密冲床机构[P].中国: CN10920353613,2021-05-07.


 


Peng B B, Shi D S, Hu R. A double-lever high-speed precision punching machine mechanism[P].China: CN10920353613,2021-05-07.


 


[9]彭斌彬,王向前,刘宏振. 高速精密冲床的发展现状及其综合性能评定方法[J].机械制造与自动化,202150(5)1-11.


 


Peng B B, Wang X Q, Liu H Z. Development status of highspeed precision press and its comprehensive performance evaluation [J]. Machine Building & Automation, 2021,50 (5)1-11.


 


[10]鹿新建,黄辉祥,谭启檐,等. 高速精密压力机多连杆驱动机构的运动学特性[J]锻压技术,2022,47(7):194-199.


 


Lu X J, Huang H X, Tan Q Y, et al. Kinematics characteristics of multilink driving mechanism for highspeed precision press [J]. Forging & Stamping Technology, 2022,47(7):194-199.


 


[11]Li M L, Liu H, Li F X, et al. Kinematics analysis and optimization design of multilink highspeed precision press[J]. International Journal of Performability Engineering, 2018,14(11): 2798-2807.


 


[12]Zheng E L, Cui S, Zhu R, et al. Thermal error modeling and compensation of multilink highspeed precision press system[J]. The International Journal of Advanced Manufacturing Technology,2021, 112(5-6):1729-1743.


 


[13]Peklenik J, Jerele A. Some basic relationships for identification of the machining processes[J]. CIRP Annals, 1992, 41(1): 155-159.


 


[14]胡云,林彬. 钛合金曲面类零件的热冲压工艺[J]. 锻压技术,2023483):95-98.


 


Hu YLin B. Hot stamping process of titanium alloy curved surface parts[J]. Forging & Stamping Technology2023483):95-98.


 


[15]岳雨蒙, 秦剑, 孙宗建, . JF75G系列高速压力机曲轴与副连杆瓦发热故障分析及工艺改进[J]. 内燃机与配件, 2018(24): 22-23.


 


Yue Y M, Qin J, Sun Z J, et al. Reducing the fever failure rate of crankshaft and associate connecting rod bush of JG75G series high speed press [J]. Internal Combustion Engine and Accessories, 2018(24): 22-23.


 


[16]胡峰峰, 孙宇, 彭斌彬, . 热变形对多杆冲床滑块运动精度的影响分析[J]. 中国机械工程, 2016, 27(14): 1847-1851.


 


Hu F F, Sun Y, Peng B B, et al. Analysis for influences of thermal deformation on kinematic accuracy of slider on multilink punch press[J]. China Mechanical Engineering, 2016, 27(14): 1847-1851.


 


[17]张庆锋, 高翔. 基于ANSYS的高速精密冲床热-结构耦合分析[J]. 郑州铁路职业技术学院学报, 2016, 28(3): 15-18.


 


Zhang Q F, Gao X. Thermal and structural coupling analysis for highspeed precision press based on ANSYS [J]. Journal of Zhengzhou Railway Technical College, 2016, 28(3): 15-18.


 


[18]陈熠, 王振忠, 雷鹏立, . 超精密机床热形变及其对运动精度的影响研究[J]. 制造技术与机床, 2023, 73(2): 5-11.


 


Chen Y, Wang Z Z, Lei P L, et al. Research on thermal deformation of ultraprecision machine tools with effect on motion accuracy [J]. Manufacturing Technology & Machine Tool, 2023, 73(2): 5-11.


 


[19]徐妍妍, 夏梓秋, 陈昳, . 重型数控机床床身热变形分析及优化[J]. 制造技术与机床, 2022, 72(6): 170-175.


 


Xu Y Y, Xia Z Q, Chen Y, et al. Analysis and optimization of thermal deformation of heavy NC machine tool bed [J]. Manufacturing Technology & Machine Tool, 2022, 72(6): 170-175.


 


[20]Cheng J, Zhou Z D, Feng Y X, et al. Thermomechanical coupling analysis of the actuating mechanism in a highspeed press[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(5): 643-653.


 


[21]Zheng E L, Jia F, Zhu S H. Thermal modelling and characteristics analysis of highspeed press system[J]. International Journal of Machine Tools and Manufacture, 2014, 85: 87-99.


 


[22]郑昊,高媛,钱峰,.高速精密压力机多杆机构弹性动力学研究[J].机械设计与制造,2024(1):6-9.


 


Zheng H, Gao Y, Qian F, et al. Study on elastodynamics of multi bar mechanism of high speed precision press [J]. Machinery Design & Manufacture, 2024(1):6-9.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9