[1]卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
Lu L, Zhao H Z. Progress in strengthening and toughening mechanisms of heterogeneous nanostructured metals [J]. Acta Metallurgica Sinica, 2022, 58(11): 1360-1370.
[2]杨明维, 杨丽娜, 冯运莉. 退火时间对0.4C-1.0Cr-0.2Mo钢冷轧后组织与性能的影响[J]. 金属热处理, 2019, 44(5): 134-137.
Yang M W, Yang L N, Feng Y L. Effect of annealing time on microstructure and properties of 0.4C-1.0Cr-0.2Mo steel after cold rolling [J]. Heat Treatment of Metals, 2019, 44(5): 134-137.
[3]张东梅, 冯运莉, 曹阔. Fe-0.4C-2Mn-4Al系δ-TRIP钢组织与力学性能研究[J]. 钢铁钒钛, 2020, 41(2): 142-146.
Zhang D M,Feng Y L,Cao K. Microstructure and mechanical properties of Fe-0.4C-2Mn-4Al system δ-TRIP steel [J]. Iron Steel Vanadium Titanium, 2020, 41(2): 142-146.
[4]周亦人, 沈自才, 齐振一, 等. 中国航天科技发展对高性能材料的需求[J]. 材料工程, 2021, 49(11): 41-50.
Zhou Yi R, Shen Z C, Qi Z Y, et al. Demand for high performance materials in development of China′s aerospace science and technology [J]. Journal of Materials Engineering, 2021, 49(11): 41-50.
[5]张馨月, 杨明维, 冯运莉, 等. 退火时间对伪共析45钢温轧后组织与性能的影响[J]. 金属热处理, 2020, 45(4): 132-136.
Zhang X Y, Yang M W, Feng Y L, et al. Effect of annealing time on microstructure and properties of warm rolled 45 steel with pseudoeutectoid type initial microstructure [J]. Heat Treatment of Metals, 2020, 45(4): 132-136.
[6]彭艳, 刘才溢, 王宁宁, 等. 一种新型热处理工艺对中碳钢组织性能影响[J]. 钢铁, 2021, 56(1): 85-90.
Peng Y, Liu C Y, Wang N N, et al. Effect of a novel heat treatment process on microstructure and mechanical properties of medium carbon steel [J]. Iron & Steel, 2021, 56(1): 85-90.
[7]汤斌, 周明星, 潘成刚, 等. 铌对中碳超细晶贝氏体钢相变动力学的影响[J]. 钢铁, 2024, 59(7): 112-121.
Tang B, Zhou M X, Pan C G, et al. Effect of Nb on bainitic transformation kinetics of medium-carbon ultra-fine grained bainitic steels [J]. Iron & Steel, 2024, 59(7): 112-121.
[8]Liu X W, Yao J Q, Ma X N, et al. Columnar-to-equiaxed transition and grain refinement by solute interaction effects[J]. Materials Characterization, 2023, 205: 113288.
[9]Fan Z, Gao F, Wang Y, et al. Effect of solutes on grain refinement[J]. Progress in Materials Science, 2022, 123: 100809.
[10]Fan Z, Gao F. Grain initiation and grain refinement: An overview[J]. Metals, 2022, 12(10): 1728.
[11]张显程, 张勇, 李晓, 等. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
Zhang X C, Zhang Y, Li X, et al. Design and manufacture of heterostructured metallic materials [J]. Acta Metallurgica Sinica, 2022, 58(11): 1399-1415.
[12]范根莲, 郭峙岐, 谭占秋, 等. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
Fan G L, Guo Z Q, Tan Z Q, et al. Architecture design strategies and strengthening-toughening mechanisms of metal matrix composites [J]. Acta Metallurgica Sinica, 2022, 58(11): 1416-1426.
[13]Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1(5): 16019.
[14]田亚强, 赵志浩, 杨子旋, 等. 温轧温度对中碳钢组织与力学性能的影响[J]. 金属热处理, 2022, 47(6): 19-25.
Tian Y Q, Zhao Z H, Yang Z X, et al. Effect of warm rolling temperature on microstructure and mechanical properties of medium carbon steel [J]. Heat Treatment of Metals, 2022, 47(6): 19-25.
[15]Ohmori A, Torizuka S, Nagai K, et al. Effect of deformation temperature and strain rate on evolution of ultrafine grained structure through single-pass large-strain warm deformation in a low carbon steel[J]. Materials Transactions, 2004, 45(7): 2224-2231.
[16]Inoue T, Kimura Y. Effect of delamination and grain refinement on fracture energy of ultrafine-grained steel determined using an instrumented Charpy impact test[J]. Materials, 2022, 15(3): 867.
[17]Poorganji B, Miyamoto G, Maki T, et al. Formation of ultrafine grained ferrite by warm deformation of lath martensite in low-alloy steels with different carbon content[J]. Scripta Materialia, 2008, 59(3): 279-281.
[18]Lyu Z Q, Qian L, Liu S, et al. Preparation and mechanical behavior of ultra-high strength low-carbon steel[J]. Materials, 2020, 13(2): 459.
[19]侯冀腾, 曹阔, 冯运莉. 中碳伪共析钢在不同温轧温度下的组织与力学性能[J]. 锻压技术, 2024, 49(4): 118-124.
Hou J T, Cao K, Feng Y L, et al. Microstructure and mechanical properties on medium carbon pseudo-eutectoid steel at different warm rolling temperatures [J]. Forging & Stamping Technology, 2024, 49(4): 118-124.
[20]Zhou Q, Huang P, Liu M, et al. Grain and interface boundaries governed strengthening mechanisms in metallic multilayers[J]. Journal of Alloys and Compounds, 2017, 698: 906-912.
[21]Chou T H, Li W P, Chang H W, et al. Quantitative analysis of hetero-deformation induced strengthening in heterogeneous grain structure[J]. International Journal of Plasticity, 2022, 159: 103482.
[22]Leung H S, Ngan A H W. Dislocation-density function dynamics-An all-dislocation, full-dynamics approach for modeling intensive dislocation structures[J]. Journal of the Mechanics and Physics of Solids, 2016, 91: 172-203.
[23]Yuan R. Revealing the effects of concomitant grain coarsening and refinement on the internal variable evolution and mechanical properties of gradient nanostructured nickel[J]. Materials Today Communications, 2022, 32: 104080.
[24]Wang H, Wang F, Qian D, et al. Investigation of damage mechanisms related to microstructural features of ferrite-cementite steels via experiments and multiscale simulations[J]. International Journal of Plasticity, 2023, 170: 103745.
[25]Masoumi M, Mohtadi-Bonab M A, Loureiro R C P, et al. Influence of spheroidized cementite on ferritic matrix boundary characteristics and mechanical behavior in commercial carbon steels[J]. Materials Research, 2024, 27: e20230497.
[26]Umar M, Qayyum F, Farooq M U, et al. Investigating the effect of cementite particle size and distribution on local stress and strain evolution in spheroidized medium carbon steels using crystal plasticity-based numerical simulations[J]. Steel Research International, 2021, 92(3): 2000407.
[27]Zhang D, Zhang M, Lin R, et al. Strengthening and strain hardening mechanisms of a plain medium carbon steel by multiscale lamellar structures[J]. Materials Science and Engineering: A, 2021, 827: 142091.
[28]Du J, Liu G, Feng Y, et al. Strength and ductility enhancement of plain carbon steel by heterostructure design[J]. Materials Science and Engineering: A, 2023, 868: 144770.
[29]Ning J, Zhang Y, Huang L, et al. Stabilized uniform deformation in a high-strength ferrite-cementite steel with multiscale lamellar structure[J]. Materials & Design, 2017, 120: 280-290.
[30]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[31]Zhou Y, Wu W, Li J. Heterostructures impacting deformation strengthening processes in QP steels: Investigating the interplay of grain rotation, slip transfer, and back stress strengthening[J]. Journal of Materials Research and Technology, 2024, 29: 5340-5353.
[32]曾帅, 郑士建, 马秀良. 层状金属结构材料原子尺度界面结构与性能[J]. 电子显微学报, 2019, 38(5): 569-578.
Zeng S, Zheng S J, Ma X L. Atomistic scale interfacial structure and properties of layered metal structural materials [J]. Journal of Chinese Electron Microscopy Society, 2019, 38(5): 569-578.
[33]Soliman M, Palkowski H. Strain hardening dependence on the structure in dual-phase steels[J]. Steel research International, 2021, 92(4): 2000518.
[34]Zhang R, Shao Z, Lin J, et al. Measurement and analysis of heterogeneous strain fields in uniaxial tensile tests for boron steel under hot stamping conditions[J]. Experimental Mechanics, 2020, 60(9): 1289-1300.
[35]陈康彦, 张志建, 胡锋, 等. 等温转变对中碳贝氏体钢组织及性能的影响[J]. 塑性工程学报, 2022, 29(11): 209-215.
Chen K Y, Zhang Z J, Hu F, et al. Influence of isothermal transformation on microstructure and properties of medium-carbon bainite steels [J]. Journal of Plasticity Engineering, 2022, 29(11): 209-215.
|