网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
预处理工艺对中碳钢组织及力学性能的影响
英文标题:Influence of pre-processing technology on microstructure and mechanical properties of medium carbon steel
作者:孙倩 刘国龙 杨明维 张馨月 冯运莉 
单位:华北理工大学 冶金与能源学院 
关键词:中碳伪共析钢 预处理 温轧 组织演变 力学性能 
分类号:TG142
出版年,卷(期):页码:2025,50(8):168-176
摘要:

 为进一步优化普碳钢的强塑性匹配,结果发现,通过调整预处理工艺,获得了具有不同先共析铁素体含量的中碳伪共析钢,并在500 ℃下对其进行温轧。先共析铁素体含量较低的实验钢在温轧后具有较高的铁素体超细晶比例,其渗碳体片层更细,配合部分条带状粗晶铁素体,表现出良好的综合力学性能,其抗拉强度为1399 MPa、屈服强度为1362 MPa、均匀伸长率为4.5%、总伸长率为5.2%、强塑积为7274.8 MPa·%。通过分析应变场演变发现,超细晶比例较高的实验钢的应变场分布更加均匀,是形成良好应变硬化能力的关键。

 To further optimize the strength-plasticity matching of plain carbon steel, medium carbon pseudo-eutectoid steels with different contents of proeutectoid ferrite were obtained by adjusting the pre-processing technology, Which was subjected to warm rolling at 500 ℃. The results show that the experimental steel with a lower proeutectoid ferrite content exhibited a higher proportion of ultra-fine grained ferrite after warm rolling. Furthermore, combined with partially banded coarse-grained ferrite, lamellar cementite was finer and demonstrated excellent comprehensive mechanical properties with the tensile strength of 1399 MPa, the yield strength of 1362 MPa, the uniform elongation of 4.5%, the total elongation of 5.2%, and the strength-plasticity product of 7274.8 MPa·%.The analysis of strain field evolution shows that the experimental steel with a higher proportion of ultra-fine grains has a more uniform strain field distribution, which is the key to form good strain hardening ability.

基金项目:
国家自然科学基金资助项目(51974134);河北省创新能力提升计划项目(24461002D)
作者简介:
作者简介:孙倩(1999-),女,硕士研究生 E-mail:sunqian34@163.com 通信作者:刘国龙(1990-),男,博士,讲师 E-mail:lgl_1990@163.com
参考文献:

 [1]卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.


Lu L, Zhao H Z. Progress in strengthening and toughening mechanisms of heterogeneous nanostructured metals [J]. Acta Metallurgica Sinica, 2022, 58(11): 1360-1370.

[2]杨明维, 杨丽娜, 冯运莉. 退火时间对0.4C-1.0Cr-0.2Mo钢冷轧后组织与性能的影响[J]. 金属热处理, 2019, 44(5): 134-137.

Yang M W, Yang L N, Feng Y L. Effect of annealing time on microstructure and properties of 0.4C-1.0Cr-0.2Mo steel after cold rolling [J]. Heat Treatment of Metals, 2019, 44(5): 134-137.

[3]张东梅, 冯运莉, 曹阔. Fe-0.4C-2Mn-4Al系δ-TRIP钢组织与力学性能研究[J]. 钢铁钒钛, 2020, 41(2): 142-146.

Zhang D M,Feng Y L,Cao K. Microstructure and mechanical properties of Fe-0.4C-2Mn-4Al system δ-TRIP steel [J]. Iron Steel Vanadium Titanium, 2020, 41(2): 142-146.

[4]周亦人, 沈自才, 齐振一, 等. 中国航天科技发展对高性能材料的需求[J]. 材料工程, 2021, 49(11): 41-50.

Zhou Yi R, Shen Z C, Qi Z Y, et al. Demand for high performance materials in development of China′s aerospace science and technology [J]. Journal of Materials Engineering, 2021, 49(11): 41-50.

[5]张馨月, 杨明维, 冯运莉, 等. 退火时间对伪共析45钢温轧后组织与性能的影响[J]. 金属热处理, 2020, 45(4): 132-136.

Zhang X Y, Yang M W, Feng Y L, et al. Effect of annealing time on microstructure and properties of warm rolled 45 steel with pseudoeutectoid type initial microstructure [J]. Heat Treatment of Metals, 2020, 45(4): 132-136.

[6]彭艳, 刘才溢, 王宁宁, 等. 一种新型热处理工艺对中碳钢组织性能影响[J]. 钢铁, 2021, 56(1): 85-90.

Peng Y, Liu C Y, Wang N N, et al. Effect of a novel heat treatment process on microstructure and mechanical properties of medium carbon steel [J]. Iron & Steel, 2021, 56(1): 85-90.

[7]汤斌, 周明星, 潘成刚, 等. 铌对中碳超细晶贝氏体钢相变动力学的影响[J]. 钢铁, 2024, 59(7): 112-121.

Tang B, Zhou M X, Pan C G, et al. Effect of Nb on bainitic transformation kinetics of medium-carbon ultra-fine grained bainitic steels [J]. Iron & Steel, 2024, 59(7): 112-121.

[8]Liu X W, Yao J Q, Ma X N, et al. Columnar-to-equiaxed transition and grain refinement by solute interaction effects[J]. Materials Characterization, 2023, 205: 113288.

[9]Fan Z, Gao F, Wang Y, et al. Effect of solutes on grain refinement[J]. Progress in Materials Science, 2022, 123: 100809.

[10]Fan Z, Gao F. Grain initiation and grain refinement: An overview[J]. Metals, 2022, 12(10): 1728.

[11]张显程, 张勇, 李晓, 等. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.

Zhang X C, Zhang Y, Li X, et al. Design and manufacture of heterostructured metallic materials [J]. Acta Metallurgica Sinica, 2022, 58(11): 1399-1415.

[12]范根莲, 郭峙岐, 谭占秋, 等. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.

Fan G L, Guo Z Q, Tan Z Q, et al. Architecture design strategies and strengthening-toughening mechanisms of metal matrix composites [J]. Acta Metallurgica Sinica, 2022, 58(11): 1416-1426.

[13]Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1(5): 16019.

[14]田亚强, 赵志浩, 杨子旋, 等. 温轧温度对中碳钢组织与力学性能的影响[J]. 金属热处理, 2022, 47(6): 19-25.

Tian Y Q, Zhao Z H, Yang Z X, et al. Effect of warm rolling temperature on microstructure and mechanical properties of medium carbon steel [J]. Heat Treatment of Metals, 2022, 47(6): 19-25.

[15]Ohmori A, Torizuka S, Nagai K, et al. Effect of deformation temperature and strain rate on evolution of ultrafine grained structure through single-pass large-strain warm deformation in a low carbon steel[J]. Materials Transactions, 2004, 45(7): 2224-2231.

[16]Inoue T, Kimura Y. Effect of delamination and grain refinement on fracture energy of ultrafine-grained steel determined using an instrumented Charpy impact test[J]. Materials, 2022, 15(3): 867.

[17]Poorganji B, Miyamoto G, Maki T, et al. Formation of ultrafine grained ferrite by warm deformation of lath martensite in low-alloy steels with different carbon content[J]. Scripta Materialia, 2008, 59(3): 279-281.

[18]Lyu Z Q, Qian L, Liu S, et al. Preparation and mechanical behavior of ultra-high strength low-carbon steel[J]. Materials, 2020, 13(2): 459.

[19]侯冀腾, 曹阔, 冯运莉. 中碳伪共析钢在不同温轧温度下的组织与力学性能[J]. 锻压技术, 2024, 49(4): 118-124.

Hou J T, Cao K, Feng Y L, et al. Microstructure and mechanical properties on medium carbon pseudo-eutectoid steel at different warm rolling temperatures [J]. Forging & Stamping Technology, 2024, 49(4): 118-124.

[20]Zhou Q, Huang P, Liu M, et al. Grain and interface boundaries governed strengthening mechanisms in metallic multilayers[J]. Journal of Alloys and Compounds, 2017, 698: 906-912.

[21]Chou T H, Li W P, Chang H W, et al. Quantitative analysis of hetero-deformation induced strengthening in heterogeneous grain structure[J]. International Journal of Plasticity, 2022, 159: 103482.

[22]Leung H S, Ngan A H W. Dislocation-density function dynamics-An all-dislocation, full-dynamics approach for modeling intensive dislocation structures[J]. Journal of the Mechanics and Physics of Solids, 2016, 91: 172-203.

[23]Yuan R. Revealing the effects of concomitant grain coarsening and refinement on the internal variable evolution and mechanical properties of gradient nanostructured nickel[J]. Materials Today Communications, 2022, 32: 104080.

[24]Wang H, Wang F, Qian D, et al. Investigation of damage mechanisms related to microstructural features of ferrite-cementite steels via experiments and multiscale simulations[J]. International Journal of Plasticity, 2023, 170: 103745.

[25]Masoumi M, Mohtadi-Bonab M A, Loureiro R C P, et al. Influence of spheroidized cementite on ferritic matrix boundary characteristics and mechanical behavior in commercial carbon steels[J]. Materials Research, 2024, 27: e20230497.

[26]Umar M, Qayyum F, Farooq M U, et al. Investigating the effect of cementite particle size and distribution on local stress and strain evolution in spheroidized medium carbon steels using crystal plasticity-based numerical simulations[J]. Steel Research International, 2021, 92(3): 2000407.

[27]Zhang D, Zhang M, Lin R, et al. Strengthening and strain hardening mechanisms of a plain medium carbon steel by multiscale lamellar structures[J]. Materials Science and Engineering: A, 2021, 827: 142091.

[28]Du J, Liu G, Feng Y, et al. Strength and ductility enhancement of plain carbon steel by heterostructure design[J]. Materials Science and Engineering: A, 2023, 868: 144770.

[29]Ning J, Zhang Y, Huang L, et al. Stabilized uniform deformation in a high-strength ferrite-cementite steel with multiscale lamellar structure[J]. Materials & Design, 2017, 120: 280-290.

[30]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[31]Zhou Y, Wu W, Li J. Heterostructures impacting deformation strengthening processes in QP steels: Investigating the interplay of grain rotation, slip transfer, and back stress strengthening[J]. Journal of Materials Research and Technology, 2024, 29: 5340-5353.

[32]曾帅, 郑士建, 马秀良. 层状金属结构材料原子尺度界面结构与性能[J]. 电子显微学报, 2019, 38(5): 569-578.

Zeng S, Zheng S J, Ma X L. Atomistic scale interfacial structure and properties of layered metal structural materials [J]. Journal of Chinese Electron Microscopy Society, 2019, 38(5): 569-578.

[33]Soliman M, Palkowski H. Strain hardening dependence on the structure in dual-phase steels[J]. Steel research International, 2021, 92(4): 2000518.

[34]Zhang R, Shao Z, Lin J, et al. Measurement and analysis of heterogeneous strain fields in uniaxial tensile tests for boron steel under hot stamping conditions[J]. Experimental Mechanics, 2020, 60(9): 1289-1300.

[35]陈康彦, 张志建, 胡锋, 等. 等温转变对中碳贝氏体钢组织及性能的影响[J]. 塑性工程学报, 2022, 29(11): 209-215.

Chen K Y, Zhang Z J, Hu F, et al. Influence of isothermal transformation on microstructure and properties of medium-carbon bainite steels [J]. Journal of Plasticity Engineering, 2022, 29(11): 209-215.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9