网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于虚拟仿真的新能源汽车铝合金控制臂自动锻造生产线设计与优化
英文标题:Design and optimization on an automatic forging production line for aluminum alloy control arms in new energy vehicles based on virtual simulation
作者:梁培新 石一磬 白鹭 赵利 陈钰金 郑子豪 郑忱 
单位:中国机械总院集团北京机电研究所有限公司 
关键词:自动生产线 铝合金控制臂 虚拟仿真 布局优化 工序集成 
分类号:TH164;TP391.9
出版年,卷(期):页码:2025,50(8):242-247
摘要:

 针对新能源汽车铝合金控制臂进行了生产工艺流程分析,基于FANUC ROBOGUIDE平台构建生产线虚拟仿真环境,对单工位方案下生产线布局与机器人动作进行仿真优化,得到单工序生产时长并识别出辊锻工序为关键瓶颈。为提升生产效率,提出工序集成策略,将压弯/压扁和预锻/终锻两道工序分别集成至两台双工位锻造压力机,形成单机双工位优化方案。虚拟仿真验证结果表明:优化后生产线平衡率提升至87.2%,增幅达9.3%;生产节拍虽略微增加4.1%,但显著减少了设备投入,综合生产成本估算约降低30%。该方案有效实现了成本与效率的平衡优化,为铝合金控制臂及同类锻件的自动生产线设计提供了可借鉴的虚拟验证方法与高效降本布局范式。

 The production process flow of aluminum alloy control arm in new energy vehicles was analyzed. A virtual simulation environment of the production line was constructed based on the FANUC ROBOGUIDE platform. The layout of the production line and the robot movements were simulated and optimized in the single-station scheme. The production time of each single process was obtained, and the roll forging process was identified as the key bottleneck. To improve the production efficiency, a process integration strategy was proposed. The bending/flattening and pre-forging/final forging processes were integrated into two double-station forging presses respectively, forming a single-machine double-station optimization scheme. The virtual simulation verification results show that the balance rate of the optimized production line is increased to 87.2%, with an increase of 9.3%. Although the production cycle is slightly increased by 4.1%, the equipment investment is significantly reduced, and the estimated comprehensive production cost is decreased by about 30%. This scheme effectively achieves a balance and optimization of cost and efficiency, providing a virtual verification method and an efficient cost-reduction layout model for the design of automatic production lines for aluminum alloy control arms and similar forgings.

基金项目:
国家科技重大专项(2024ZD0608100)
作者简介:
作者简介:梁培新(1990-),女,硕士,工程师 E-mail:liangpeixin_110@163.com
参考文献:

 [1]中国汽车工业协会.新能源汽车产业发展报告(2024-2025)[R]. 北京:中国汽车工业协会,2024.


China Association of Automobile Manufacturers (CAAM). New Energy Vehicle Industry Development Report (2024-2025) [R]. Beijing: China Association of Automobile Manufacturers, 2024.

[2]中国汽车工程学会. 节能与新能源汽车技术路线图2.0 [R]. 北京:中国汽车工程学会,2020.

China Society of Automotive Engineers (SAE). Energy-saving and New Energy Vehicle Technology Road Map 2.0[R]. Beijing: China Society of Automotive Engineers, 2020.

[3]Zhang Y, Li Q. Digital twin-driven manufacturing system optimization: A case study in forging production[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102491.

[4]Wang L, Wang H, Tang Q, et al. Dynamic scheduling for flexible forging production lines based on reinforcement learning[J]. Journal of Manufacturing Systems, 2022, 65: 392-403.

[5]陈诚和. 基于仿真优化的制造企业生产线平衡问题研究[D].合肥:合肥工业大学,2007.

Chen C H. Research on Line Balancing Problem of Manufacturing Enterprises Based on Simulation Optimization[D]. Hefei:Hefei University of Technology, 2007.

[6]Schuh G, Kunz J. Virtual commissioning for reducing commissioning time in manufacturing lines [J]. Procedia CIRP, 2021, 102: 456-461.

[7]禹鑫燚,王振华,欧林林.工业机器人虚拟仿真技术及应用 [M]. 北京:机械工业出版社,2022.

Yu X Y, Wang Z H, Ou L L. Virtual Simulation Technology and Application for Industrial Robots [M]. Beijing: China Machine Press, 2022.

[8]张曦文,吕瑞强,卜泳,等.基于仿真的飞机导管自动化生产线规划设计与优化[J].航空制造技术,2021,64(5):82-88.

Zhang X W, Lyu R Q, Bu Y, et al. Simulation based planning and optimization of aircraft tube automation production line[J]. Aeronautical Manufacturing Technology, 2021, 64(5): 82-88.

[9]白鹭, 李思奇, 梁培新,等. 铝合金转向节自动化锻造生产线控制系统设计[J].锻压技术,2023,48(10):200-206.

Bai L, Li S Q, Liang P X, et al. Control system design on automatic forging production line for aluminum alloy steering knuckle[J]. Forging & Stamping Technology,2023,48(10):200-206. 

[10]李国财,章盼梅,邹景豪,等.基于RobotStudio的热水壶冲压生产线仿真及研究[J].国外电子测量技术,2024,43(9):97-103.

Li G C, Zhang P M, Zou J H, et al. Simulation and research of hot kettle stamping production line based on RobotStudio[J]. Foreign Electronic Measurement Technology, 2024, 43(9): 97-103.

[11]国际机器人研究基金会.工业机器人复杂任务规划与控制 [M]. 上海:上海交通大学出版社,2022.

International Foundation for Robotics Research. Complex Task Planning and Control for Industrial Robots [M]. Shanghai: Shanghai Jiao Tong University Press, 2022. 

[12]周高峰. 生产线节拍精益优化的方法研究[J].现代制造技术与装备,2018(7):60-62.

Zhou G F. Research on lean optimization method of production line beat [J]. Modern Manufacturing Technology and Equipment, 2018(7):60-62.

[13]延渊渊,范文慧,冯袁. 汽车连杆生产线的建模与仿真 [J]. 系统仿真学报,2018,30(9):3360-3376.

Yan Y Y, Fan W H, Feng Y. Modeling and simulation of connecting rod production line [J]. Journal of System Simulation, 2018, 30(9): 3360-3376.

[14]王小明,李建军.多工位压力机在汽车锻造产线的集成应用研究 [J]. 锻压技术,2023, 48(7): 189-195.

Wang X M, Li J J. Research on integrated application of multi-station presses in automotive forging production lines [J]. Forging & Stamping Technology, 2023, 48(7): 189-195.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9