Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Analog-circuit model for isothermal forging process of P/M turbine discs based on artificial neural network
Authors: LIU Yu-hong1 LI Fu-guo2 ZHANG Lian-hong1(1.School of Mechanical Engineering Tianjin University Tianjin 300072 China 2.School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 China) 
Unit:  
KeyWords: turbine disc artificial neural network analog circuit isothermal forging 
ClassificationCode:TG316.8
year,vol(issue):pagenumber:2007,32(3):111-115
Abstract:
In order to increase forging qualities and yield of powder metallurgical(P/M) turbine disc,it is necessary to establish a dynamic model fitting for real-time control of P/M turbine disc isothermal forging process.In the present work,the virtual orthogonal experimental(VOE) of P/M turbine disc isothermal forging was accomplished using finite element simulation.The deformation law of the material was analyzed.The artificial neural network model of P/M turbine disc isothermal forging process was obtained by using the data of VOE to train the BP(Back Propagation) network.Then the analog-circuit model of P/M turbine disc isothermal forging process was established by using the learning results of ANN.The analog-circuit model was applied to the reference model of model reference adaptive control system to realize real-time control.The results show that the ANN model and the analog-circuit model have high fit precision for P/M turbine disc isothermal forging process.The controlling parameters are always coincidence with the output of models.
Funds:
天津大学青年教师基金资助项目(5110105);; 航空基础科学基金资助项目(03H53048)
AuthorIntro:
Reference:
[1]Alkan A D,Gulez K,Yilmaz H Design of a robust neural net-work structure for determining Initial Stability Particulars ofFishing Vessels[J].Ocean Engineering,2004,31(5-6):761-777.
[2]潘江峰,钟约先,袁朝龙.基于遗传算法和神经网络技术的板料拉深成形参数优化[J].锻压技术,2006,31(6):44-47.
[3]胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社:1993,10.
[4]Madadi Kojabadi H.Simulation and experimental studies ofmodel reference adaptive system for sensorless induction motordrive[J].Simulation Modelling Practice and Theory,2005,13(6):451-464.
[5]李久胜,石松伟,陈宇,等.充液拉深装备中压边压力闭环控制系统调节器的设计[J].锻压技术,2005,30(2):32-35.
[6]刘玉红,李付国,吴诗?.细晶态FGH96热成型时的流动行为研究[J].航空学报,2003,24(3):278-281.
[7]刘玉红.粉末高温合金等温成形模拟与控制[D].西安:西北工业大学,2004.11
[8]Cai Kai,Xia Juntao,Li Longtu,et al.Analysis of the electri-cal properties of PZT by a BP artificial neural network[J].Computational Materials Science,2005,34(2):166-172.
[9]Haque E Mohammed,Sudhakar K V.ANN back-propagationprediction model for fracture toughness in microalloy steel[J].International Journal of Fatigue,2002,24(9):1003-1010.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com