Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation characteristics of Ti-46.5Al-2.5V-1.0Cr-0.3Ni alloy using processing maps
Authors: SI Jia-yong  GAO Fan  ZHANG Ji 
Unit: Central South University of Forestry & Technology  Central Iron and Steel Research Institute 
KeyWords: TiAl alloy  processing map  dynamic recrystallization  hot deformation characteristics 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2010,35(6):112-118
Abstract:

The hot deformation behaviors of Ti-46.5Al-2.5V-1.0Cr-0.3Ni alloy in the temperature range of 1000-1200 ℃ and strain rate range of 0.001-1.0 s-1 were studied using hot compressing testing on a Gleeble\|1500 simulator. And a processing map was developed on the basis of these data and the principles of dynamic material modeling. The map exhibits two domains: the first one at 1100 ℃ and 0.01 s-1 with a peak efficiency of power dissipation of 34%, the second one at 1105 ℃ and 0.001 s-1 with a peak efficiency of power dissipation of 34%.  Optical microscopic observations show that they represent two dynamic recrystallization (DRX) domains with different mechanisms. At temperatures lower than 1140 ℃ and strain rates higher than 0.01 s-1, the material may be subjected to potential instabilities for the inhomogeneous growing of dynamic recrystallization grains during the hot deformation. At temperatures 1000-1130 ℃ and strain rates higher than 0.02 s-1, the shear crack of the samples is obviously. On the basis of the above processing map, the hot deformation should be carried out in the dynamic recrystallization domains Ι.

Funds:
863国家高技术研究发展计划(2006AA03A204)
AuthorIntro:
Reference:


[1]Kim Y W. Ordered intermetallic alloys (Ⅲ)-gamma titanium aluminides[J]. JOM, 1994, 46(7): 30-39.
[2]Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics[J]. Acta.Metall. Mater., 2000, 48:307-322.
[3]Kim Y W. Microstructural evolution, tensile properties and fracture toughness in a forged gamma titanium aluminide alloy[J]. Acta.Metall. Mater., 1992, 40(6):1121-1134.
[4]Zhang J, Su X, Strom E, et al. Effects of minor addition of Ni on hot-deformation behavior of gamma TiAl alloy[J]. Materials Science and Engineering, 2002, A329331: 499-503.
[5]Zhang J, Li S Q, Zou D X, et al. Recent advances of wrought TiAl alloys[J]. Trans. Nonferrous Met. Soc. China,2002, 12: 592-595.
[6]Kim Y W, Dennis M Dimiduk. Progress in the understanding of gamma titanium aluminides[J]. JOM, 1991, 43(8): 40-47.
[7]Liu C T, Schneibel J H, Maziasz P J. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, (4):429-440.
[8]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. Int. Mater. Reviews, 1998,43:243-258.
[9]Prasad Y V R K. Recent advances in the science of mechanical processing[J]. Indian J.Technol., 1990,28: 435-451.
[10]Prasad Y V R K, Gegel H L. Modeling of dynamic material behavior in hot deformation forging of Ti6242[J]. Metall.Trans.A,1984,15(10):18831892.
[11]Prasad Y V R K. Processing maps: a status report[J]. J. Mater. Eng. Performnace, 2003,12(6):638-645.
[12]曾卫东, 徐斌, 何德华,等. 应用加工图理论研究Ti2AlNb基合金的高温变形特性[J]. 稀有金属材料与工程,2007,36(4): 592-596.
[13]Prasad Y V R K, Sasidhara S. Hot working guide: a compendium of processing maps[A]. Materials Park[C]. OH: ASM International,1997.
[14]吕炎. 锻造工艺学[M]. 北京:机械工业出版社,1995.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com