Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction model for microstructure evolution of Ti-46.5Al-2.5V-1.0Cr-0.3Ni alloy during cogging
Authors: SI Jia-yong  GAO Fan  ZHANG Ji 
Unit: Central South University of Forestry & Technology Central Iron and Steel Research 
KeyWords: TiAl alloy  cogging  dynamic recrystallization  prediction model for microstructure evolution 
ClassificationCode:TG376.2
year,vol(issue):pagenumber:2011,36(5):137-143
Abstract:

The microstructure evolution process of cast Ti-46.5Al-2.5V-1.0Cr-0.3Ni alloy during cogging process in the temperature range of 10001200 ℃ and strain rate range of 0.0011.0 s-1 was studied by hot compressing testing on a Gleeble1500 simulator. And the characteristic of deformed microstructure with different technological parameters was studied and quantized by quantitative metallography method. Based on the experimental results, the model of dynamic recrystallization volume fraction and dynamic recrystallization grain size were set up in order to predict microstructure and grain size of cast TiAl alloy during cogging process.

Funds:
863国家高技术研究发展计划(2006AA03A204);中南林业科技大学青年科学研究基金重点资助项目(QJ2010001A)
AuthorIntro:
Reference:

[1]Kim Y W, Dimiduk Dennis M. Progress in the understanding of gamma titanium aluminides[J]. JOM, 1991, 43(8): 40-47.

[2]Kim Y W. Ordered intermetallic alloys, part Ⅲ: gamma titanium aluminide[J]. JOM, 1994, 46(7): 30-39.

[3]Clemens H, Kestler H, Eberhardt N, et al. Processing of gamma-TiAl based alloys on an industrial scale[A]. Kim Y W, Dimiduk Dennis M, Loretto Michael H. Gamma Titanium Aluminides[C]. Warrendale: TMS, 1999.

[4]Semiatin S L. Wrought processing of ingot-metallurgy gamma titanium aluminide alloys[A]. Kim Y W, Wagner R, Yamaguchi M. Gamma titanium aluminides[C]. Warrendale: TMS,  1995.

[5]Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics[J]. Acta Metall. Mater., 2000, 48:307-322.

[6]Semiatin S L, Seetharaman V, Jain V K. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide[J]. Metall. & Mater. Trans. A,1994, 25A(12):2753-2768.

[7]Fujiwara T, Nakamura A, Hosomi M, et al. Deformation of polysynthetically twinned crystals of TiAl with a nearly-stoichiometric composition[J]. Philosophical Magazine A, 1990, 61: 591-606.

[8]张永刚,韩雅芳,陈国良,等. 金属间化合物结构材料[M]. 北京:国防工业出版社,2003.

[9]Jiayong Si, Pengbiao Han, Ji Zhang. The design for the isothermal forging of Ti46.5Al2.5V1.0Cr0.3Ni alloy[J]. Journal of Iron and Steel Research, 2010, 17(8):67-73.

[10]Karhausen K, Kopper R. Model for integrated process and microstructure simulation in hot forming[J]. Steel Reasearch,1992, 63(6):247-271.

[11]Sellars C M. Thephysical metallurgy of hot working[A]. Sellars C M, Davies C J. Hot working and forming processes[C]. London: Metals Society,1980.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com