Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Feasibility supplementary criterion and finite element numerical simulation of bulging for multiple reinforcement ribs
Authors: GUAN Ai-zhi  SHI Yu-qing 
Unit: Zhejiang University of Science and Technology 
KeyWords: metal shell part multiple reinforcement ribs  bulging  numerical simulation  finite element method  ANSYS/LS-DYNA 
ClassificationCode:TG386.32
year,vol(issue):pagenumber:2013,38(3):165-169
Abstract:

Multiple reinforcement ribs of metal shell parts should be made by one bulging procedure, while the current bulging feasibility criterion used for single reinforcement rib can not be directly used to determine whether multiple reinforcement ribs can be successfully bulged for the first time. After the regions between the positive reinforcement ribs were regarded as reverse reinforcement ribs, a feasibility supplementary criterion of bulging for multiple reinforcement ribs was proposed based on the supposition that the maximum bulging increment of reverse ribs should be smaller than that of positive ribs. Three kinds of metal shell parts were modeled, with single reinforcement rib, multiple ribs with small center distance and multiple ribs with large center distance, respectively. And the numerical simulation of the bulging process for those parts was carried out through ANSYS/LS\|DYNA module based on finite element method. The validity of the feasibility supplementary criterion of bulging for multiple reinforcement ribs was verified by the results of thickness thinning rate distribution and forming limit diagram. The center distance between adjacent ribs is the key factor for determining the feasibility of once bulging.

Funds:
浙江省科技计划重点工业研究项目(2006C21052)
AuthorIntro:
Reference:


[1]周杰, 黄人江, 郭武俊, 等. 扇形加强筋结构对汽车后轮毂包成形质量的影响[J]. 锻压装备与制造技术, 2009, (4): 70-72.Zhou J, Huang R J, Guo W J, et al. The application of sector tendon structure to design of auto cover panel[J]. China Metal Forming Equipment & Manufacturing Technology, 2009, (4): 70-72.
[2]季学荣, 丁晓红. 板壳结构加强筋优化设计方法[J]. 机械强度, 2012, 34(5): 692-698.Ji X R, Ding X H. Design optimization method of stiffeners on plane and shell structures[J]. Journal of Mechanical Strength, 2012, 34(5): 692-698.
[3]姜奎华. 冲压工艺与模具设计[M]. 北京: 机械工业出版社, 2011.Jiang K H. Stamping Process and Die Design[M]. Beijing:China Machine Press, 2011.
[4]王孝培. 冲压手册[M]. 3版.北京: 机械工业出版社, 2012.Wang X P. The Stamping Manual[M]. 3rd Edition .Beijing: China Machine Press, 2012.
[5]翁其金, 徐新成. 冲压工艺及冲模设计[M]]. 北京: 机械工业出版社, 2008.Weng Q J, Xu X C. Stamping Process and Die Design[M]. Beijing: China Machine Press, 2008.
[6]徐祥合, 张卫刚, 李淑慧, 等. 材料性能参数对液压成形件厚度分布的影响规律研究[J]. 塑性工程学报, 2007, 14(6): 101-104.Xu X H, Zhang W G, Li S H, et al. The effects of material property parameters on the thickness distribution of hydroformed parts[J]. Journal of Plasticity Engineering, 2007, 14(6): 101-104.
[7]李伟锋, 乔明杰. 杯突试验测定板料形极限图的试验研究[J]. 锻压技术, 2010, 35(6): 63-65.Li W F, Qiao M J. Experimental study on determinating forming limit diagram of sheet metal with cupping test method[J]. Forging & Stamping Technology, 2010, 35(6): 63-65.
[8]王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京: 南京航空航天大学, 2011.Wang H. Acquisition Method of Forming Limit Diagram and Its Application in Sheet Metal Forming[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
[9]程驰, 龙士国, 马增胜, 等. 基于弧长法和减薄率判据研究金属镀层的成形极限[J]. 材料导报B, 2012, 26(5): 135-139.Cheng C, Long S G, Ma Z S, et al. Study on the forming limit of nickel plated steel strip based on arclen method and thinnimg rate criteria[J]. Materials Review B: Research, 2012, 26(5): 135-139.
[10]郑刚, 李光耀, 孙光永, 等. 基于近似模型的拉延筋几何参数反求[J]. 中国机械工程, 2006, 17(19): 1988-1992.Zheng G, Li G Y, Sun G Y, et al. Geometrical parameter inverse problem for drawbeads based on the approximate model[J]. China Mechanical Engineering, 2006, 17(19): 1988-1992.
[11]孙成智, 陈关龙, 李淑惠, 等. 变压边力对矩形成形性能的影响[J]. 塑性工程学报, 2003, 10(4): 6-9.Sun C Z, Chen G L, Li S H, et al. The effect of variable blank-holder forces on formability of rectangle box deep drawing[J]. Journal of Plasticity Engineering, 2003, 10(4): 6-9.
[12]吴勇国. 板材成形过程数值模拟研究[D]. 武汉: 华中理工大学, 1995.Wu Y G. The numerical simulation of sheet metal forming process[D]. Wuhan: Huazhong University of Science and Technology, 1995.
[13]施于庆, 楼易. 筒形件拉深孔成形工艺数值模拟分析[J]. 农业机械学报, 2008, 39(12): 191-195.Shi Y Q, Lou Y. Numerical simulation analysis on drawing\|hole forming technology to cylinder cup[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(12): 191-195.
[14]肖景容, 姜奎华. 冲压工艺学[M]. 北京: 机械工业出版社, 2011.Xiao J R, Jiang K H. Stamping Technology [M]. Beijing: China Machine Press, 2011.
[15]张晓斌, 孙宇, 代珊. 基于径向基神经网络杯形件胀形成形变压变力预测技术研究[J]. 机械设计, 2007, 24(8): 36-38.Zhang X B, Sun Y, Dai S. A study on the prediction technology of variable blank\|holding force for deep drawing forming of cup shaped parts based on radial basis neural net work[J]. Journal of Machine Design, 2007, 24(8): 36-38.
[16]陈龙, 王明伟, 李姝, 等. 汽车加强板冲压成形数值模拟及试验研究[J]. 锻压技术, 2012, 37(6): 182-186.Chen L, Wang M W, Li S, et al. Forming numerical simulation and experiment for automotive enforcement panel[J]. Forging & Stamping Technology, 2012, 37(6): 182-186.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com