Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot power spinning technology and research status of difficult-to-deform metal
Authors: Zhu Ningyuan  Xia Qinxiang  Xiao Gangfeng  Cheng Xiuquan 
Unit: South China University of Technology Guangzhou Civil Aviation College 
KeyWords: difficult-to-deform metal  hot power spinning  macro quality control  microstructure evolution  precision/property integrated control 
ClassificationCode:TG302;TH142.2
year,vol(issue):pagenumber:2014,39(9):42-47
Abstract:

The plastic deformation of the difficult-to-deform metal can be realized by hot power spinning, which utilizes the characterisitics of small the deformation resistance, high plasticity and spinning feasibility of metal at high temperature and small forming force, simple forming tool, high material utilization, etc.. The hot power spinning technology of difficult-to-deform metal was comprehensive discussed by analyzing the feasibility of the hot power spinning, the macro quality control and the microstructure evolution of the difficult-to-deform metal. The current research status about the above three aspects was reviewed. The results show that the current studies are mainly focused on the macro forming quality of titanium alloy and there lacks the study on the structure property control of difficult-to-deform metal during spinning. Considering that the hot power spinning of high-temperature alloy is a difficulty topic on the study of plastic deformation of difficult-to-deform metal, it is further proposed that the precision/property integrated control between the macro forming quality and microstructure evolution will become the research tendency on the hot power spinning of difficult-to-deform metal.

Funds:
国家自然科学基金资助项目(51375172);高等学校博士学科点专项科研基金资助项目(20130172110024)
AuthorIntro:
朱宁远(1986-),男,博士研究生
Reference:


[1]王安乐. 难变形合金锻件生产技术[M]. 北京:国防工业出版社,2005.Wang A L. Technology of Difficult-to-deform Alloy Forging[M]. Beijing: National Defence Industry Press, 2005.
[2]朱艳春,秦建平,李子良. 难变形金属棒线材连轧机孔型设计计算界面的开发[J]. 稀有金属快报,2008,27(8):38-40.Zhu Y C, Qin J P, Li Z L. Calculation interface development for groove design of continuous rolling on difficult-to-form metal wire[J]. Transactions of Materials and Heat Treatment, 2008, 27(8): 38-40.
[3]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures[J]. Annals of the CIRP,2006, 55 (2): 793-816.
[4]Kenichiro Mori, Minoru Ishiguro, Yuta Isomura. Hot shear spinning of cast aluminium alloy parts[J]. Journal of Material Processing Technology,2009, (209):3621-3627.
[5]崔忠忻,覃耀春. 金属学及热处理[M]. 北京: 机械工业出版社,2009.Cui Z X, Tan Y C. Metallography & Heat Treatment[M]. Beijing: China Machine Press, 2009.
[6]王成和,刘克璋. 旋压技术[M]. 北京:机械工业出版社,1986.Wang C H, Liu K Z. Spinning Technology[M]. Beijing: China Machine Press, 1986.
[7]Sun L Y, Xiao Q X, Cheng X Q, et al. Influence of roller on tooth height of internal spline formed by spin-forming[J]. Key Engineering Materials, 2012,(522): 268-271.
[8]Yang B J, Xia Q X, Xiao G F, et al. Research on key technologies of mesoscopic FEA model for polycrystalline metal power spinning[J]. Advanced Materials Research, 2012,( 562-564):286-289.
[9]Wong C C, Dean T A, Lin J. A review of spinning, shear forming and flow forming processes[J]. International Journal of Machine Tools and Manufacture, 2003, (43): 1419-1435.
[10]夏琴香,张鹏,程秀全,等. 筒形件错距旋压成形工艺参数的正交试验研究[J]. 锻压技术,2012,37(6):42-46.Xia Q X, Zhang P, Cheng X Q, et al. Orthogonal experimental study on forming process parameters of tube stagger spinning[J]. Forming & Stamping Technology, 2012, 37(6): 42-46.
[11]赵伟. 热旋压工艺及其应用[J]. 模具制造,2012,(11):37-39.Zhao W. Hot Spinning Process and Application[J]. Die & Mould Manufacture, 2012, (11): 37-39.
[12]徐斌,曾卫东,何德华,等. Ti-22Al-25Nb合金热变形行为研究[J]. 热加工工艺,2007,(1):1-4.Xu B, Zeng W D, He D H, et al. Study on hot deformation behavior of Ti-22Al-25Nb alloy[J]. Hot Working Technology, 2007, (1):1-4.
[13]徐文臣,单德彬,陈宇, 等. 钛合金薄壁筒形件热旋成形技术研究[J]. 锻压技术,2008,33(3):56-59.Xu W C, Shan D B, Chen Y, et al. Study on hot spinning technology of tubular workpieces for TA15 titanium alloy[J]. Forging & Stamping Technology, 2008, 33(3):56-59.
[14]Fan J K, Kou H C, Lai M J, et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333[J]. Materials and Design, 2013, (49):945-952.
[15]张成,杨海成,韩冬,等. 钛合金旋压技术在国内航天领域的应用及发展[J]. 固体火箭技术,2013,(1):127-132.Zhang C, Yang H C, Han D, et al. Applications and development of titanium alloys spinning technology in domestic aerospace field[J]. Journal of Solid Rocket Technology, 2013,(1):127-132.
[16]张军,胡永霞. 2A70铝合金的旋压变形及时效强化[A]. 第十二届旋压年会论文集
[C].长春,2011.Zhang J, Hu Y X. Research on spinning deformation and ageing strengthening of 2A70 aluminium alloy[A]. The 12th Spinning annual Conference Proceeding[C]. Changchun,2011.
[17]王建国,杨英丽,苏航标,等. 高强韧Ti-451合金的可旋性研究[J]. 钛工业进展,2009,(3):30-33.Wang J G, Yang Y L, Su H B, et al. Study on power spinning feasibility of high strength & toughness Ti-451 alloy[J]. Titanium Industry Progress, 2009, (3):30-33.
[18]孙琳琳,寇宏超,胡锐,等. Ni-Cr-W-Mo合金曲母线异型件第一道次热旋成形有限元模拟[J]. 塑性工程学报,2010,17(2):33-38.Sun L L, Kou H C, Hu R, et al. FEM numerical simulation of first-pass heat spinning for Ni-Cr-W-Mo superalloy workpiece with curvilinear shape[J]. Journal of Plasticity Engineering, 2010, 17(2):33-38.
[19]安震,李金山,胡锐,等. Ni-Cr-W-Mo合金异型件的热旋成形规律有限元分析[J]. 稀有金属材料与工程,2013,(1):70-74.An Z, Li J S, Hu R, et al. FEM analysis on the heat spinning for Ni-Cr-W-Mo superalloy workpiece with strange shape[J]. Rare Metal Materials and Engineering, 2013, (1):70-74.
[20]毛雪平,王岗,张立殷,等. 镍基合金C276高温拉伸力学性能的试验分析[J]. 动力工程,2009,(7):699-702.Mao X P, Wang G, Zhang L Y, et al. High temperature tensile properties of nickel based alloy C276[J]. Journal of Power Engineering, 2009, (7):699-702.
[21]Moria K I, Ishiguro M, Isomura Y .Hot shear spinning of cast aluminium alloy parts [J]. Journal of Materials Processing Technology, 2009, (209): 3621-3627.
[22]徐文臣,杨国平,陈宇,等. BT20钛合金旋压件热旋缺陷形成机理及对策[J]. 航空制造技术,2007,(z1): 466-469.Xu W C, Yang G P, Chen Y, et al. Defects formation mechanism and control method of tubular workpieces of titanium alloy BT20 by Hot Spinning[J]. Aeronautical Manufacturing Technology, 2007, (z1): 466-469.
[23]李启军,吕宏军,王琪,等. 薄壁曲母线TC4钛合金构件热旋模拟与试验研究[J]. 天津工业大学学报,2008,27(2):61-65.Li Q J, Lv H J, Wang Q, et al. FEM numerical simulation of spinning processing for thin TC4 alloy workpieee with curvilinear shape[J]. Journal of Tianjin Polytechnic University, 2008, 27(2):61-65.
[24]牟少正,韩冬,杨英丽, 等. 铸造钛合金管坯的旋压成形及性能研究[J]. 锻压装备与制造技术,2009,44(2):98-100.Mou S Z, Han D, Yang Y L, et al. Research on tube spinning process and properties of cast titanium alloy[J]. China Metalforming Equipment & Manufacturing Technology, 2009, 44(2):98-100.
[25]Chen Y, Xu W C, Shan D B. Microstructure evolution of TA15 titanium alloy during hot power spinning[J]. Transactions of Nonferrous Metals Society of China, 2011, (21): 323-328.
[26]杨国平,徐文臣,陈宇,等. BT20钛合金筒形件旋压组织和择优取向研究[J]. 材料科学与工艺,2009,17(4): 467-469, 473.Yang G P, Xu W C, Chen Y, et al. Tube-spinning microstructure and preferential orientation of BT20 alloy[J]. Materials Science and Technology, 2009,17(4): 467-469, 473.
[27]赵云豪,汪发春,沈健,等. TB2钛合金筒形件旋压变形组织性能的研究[J]. 锻压技术,2007,32(6): 87-89,94.Zhao Y H, Wang F C, Shen J, et al. Investigation on microstructure and mechanical properties of TB2 titanium alloy after tube-spinning deformation[J]. Forging & Stamping Technology, 2007, 32(6):87-89,94.
[28]Shan D B, Yang G P, Xu W C. Deformation history and the resultant microstructure and texture in backward tube spinning of Ti-6Al-2Zr-1Mo-1V [J]. Journal of Materials Processing Technology, 2009, (209): 5713-5719.
[29]Jang Y S, Kim B M. Application of the finite element method to predict microstructure evolution in the hot forging of steel[J]. J. Mater. Process. Technol., 2000, (101): 85-94.
[30]Gottstein G, Marx V, Sebald R. Integral recrystallization modeling[J]. Journal of Shanghai Jiaotong University,2000, 5 (1): 49-57.
[31]王春晓. 基于平面压缩模型的TA15钛合金热旋组织性能预测[D]. 哈尔滨:哈尔滨工业大学,2011.Wang C X. The Organization and Performance Prediction of TA15 Titanium Alloy Heat Spinning Based on the Plane Compression Model[D]. Harbin: Harbin Institute of Technology, 2011.
[32]黄乾尧,李汉康. 高温合金[M]. 北京:冶金工业出版社,2000.Huang G Y, Li H K. High Temperature Alloy[M]. Beijing: Metallurgical Industry Press, 2000.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com