Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Application of cruciform biaxial tests in the research of sheet metal formability
Authors: Liu Wei  Chu Xingrong  Han Kun 
Unit: Wuhan University of Technology Shandong University  Weihai Beijing Aeronautical Manufacturing Technology Research Institute 
KeyWords: biaxial tension dynamic test yield locus hardening model forming limit curve 
ClassificationCode:TG386
year,vol(issue):pagenumber:2016,41(3):1-8
Abstract:

Due to the advantages of in-plane loading and deformation path on-line controlling, the cruciform biaxial test has been widely used to research the constitutive model and the forming limit of sheet metals. The biaxial testing apparatus and the cruciform specimen design are the two key issues. Up to date, the biaxial tensing apparatus includes the simple mechanical devices, static biaxial testing machines and dynamic biaxial testing machines, and the cruciform specimen design shows characteristics, such as notches at the intersections, slits in each arm and thickness reduction at the central zone. A large number of research work has been performed to successfully realize the validation of anisotropic yield functions identification of hardening models and determination of forming limit curves for sheet metals by the cruciform biaxial tests.

Funds:
国家自然科学基金资助项目(51405266);中央高校基本科研业务费专项资金资助(2016IVA001);山东省自然科学基金资助项目(ZR2014EEP003)
AuthorIntro:
刘维(1986-),男,博士,讲师 通讯作者:褚兴荣(1983-),男,博士,讲师
Reference:


[1]Govik A, Nilsson L, Moshfregh R. Finite element simulation of the manufacturing process chain of a sheet metal assembly[J]. Journal of Materials Processing Technology, 2012, 212(7): 1453-1462.
[2]Flores P, Duchene L, Bouffioux C, et al. Model identification and FE simulations: Effect of different yield loci and hardening laws in sheet forming[J]. International Journal of Plasticity, 2007, 23(3): 420-449.
[3]Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations[J]. International Journal of Plasticity, 2007, 23(3): 385-419.
[4]ISO 6892—1:2009, Metallic materials - Tensile testing -Part 1: Method of test at room temperature [S].
[5]Bruchi S, Altan T, Banabic D, et al. Testing and modeling of material behavior and formability in sheet metal forming[J]. CIRP Annals-Manufacturing Technology, 2014, 63(2): 727-749.
[6]ISO 16808:2014, Metallic materials-Sheet and strip-Determination of biaxial stress-strain curve by means of bulge test with optical measuring systems [S].
[7]Lazarescu L, Comsa D, Nicodim I, et al. Characterization of plastic behavior of sheet metals by hydraulic bulge test [J]. Transactions of Nonferrous Metals Society of China,2012, 22(22): 275-279.
[8]Kuwabara T, Sugawara F. Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range[J]. International Journal of Plasticity, 2013, 45(2):103-118.
[9]王宁华,杨连发. 基于液压胀形实验及增量理论构建管材本构关系[J]. 锻压技术,2015, 40(2):133-137.Wang N H, Yang L F. Determination of constitutive relationshiop of tubular materials based on incremental theory and hydraulic bulge test [J]. Forging & Stamping Technology, 2015, 40 (2): 133-137.
[10]Hanabusa Y, Takizawa H, Kuwabara T. Numerical verification of a biaxial tensile test method using a cruciform specimen[J]. Journal of Materials Processing Technology, 2013, 213(6): 961-970.
[11]ISO 16842:2014, Metallic materials-Sheet and strip-Biaxial tensile testing method using a cruciform test piece [S].
[12]Hannon A, Tiernan P. A review of planar biaxial tensile test systems for sheet metal [J]. Journal of Materials Processing Technology, 2008, 198 (S1-3): 1-13.
[13]Ferron G, Makinde A. Design and development of a biaxial strength testing device [J]. Journal of Testing and Evaluation, 1988, 16(3): 253-256.
[14]Tasan C C, Hoefnagels J P M, Quaak G, et al. In-plane biaxial loading of sheet metal until fracture[A]. Proceedings of XIth International Congress and Exposition[C]. Florida, USA,2008.
[15]Geiger M, Van der Heyd G, Merklein M, et al. Novel concept of experimental setup for characterization of plastic yielding of sheet metal at elevated temperatures[J]. Advanced Materials Research,2005, 6-8: 657-664.
[16]Lee R, Chien T. A new method for testing formability in sheet metal forming at biaxial tensile state [J]. Key Engineering Materials, 2015, 626: 275-280.
[17]Abu-Farha F, Hector L G, Khraisheh M . Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials[J]. JOM, 2009, 61(8): 48-56.
[18]Makinde A, Thibodeau L, Neale K W. Development of an apparatus for biaxial testing using cruciform specimens[J]. Experimental Mechanics, 1992, 32(2): 138-144.
[19]Kuwabara T, Ikeda S, Kuroda K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension[J]. Journal of Materials Processing Technology, 1998, 80-81(98): 517-523.
[20]万敏,洪强,吴向东,等.十字形试件双向拉深试验系统建立及加载精度分析[J].机械工程学报,2001,37(1):57-62.Wan M, Hong Q, Wu X D, et al. Establishment of biaxial tensile test of cruciform specimen and analysis of loading accuracy[J]. Chineses Journal of Mechanical Engineering, 2001, 37(1): 57-62.
[21]Boehler J P, Demmerle S, Koss S. A new direct biaxial testing machine for anisotropic materials[J]. Experimental Mechanics, 1994, 34(1): 1-9.
[22]Merklein M, Biasutti M. Development of a biaxial tensile machine for characterization of sheet metals[J]. Journal of Materials Processing Technology, 2013, 213(6): 939-946.
[23]Shimamoto A, Shimomura T, Nam J. The development of servo dynamic biaxial loading device[J]. Key Engineering Materials, 2003, 243-244: 99-104.
[24]Zidane I, Guines D, Leotoing L, et al. Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets[J]. Measurement Science and Technology, 2010, 21(5): 1-11.
[25]Yu Y, Wan M, Wu X, et al. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM [J]. Journal of Materials Processing Technology, 2002, 123: 67-70.
[26]Memmerle S, Boehler J P. Optimal design of biaxial tensile cruciform specimens [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 143-181.
[27]Shiratori E, Ikegami K. Experimental study of the subsequent yield surface by using cross-shaped specimens[J].Journal of the Mechanics and Physics of Solids, 1968, 16 (6): 373-394.
[28]Lin S B, Ding J L. Experimental study of the plastic yielding of rolled sheet metals with cruciform plate specimen[J]. International Journal of Plasticity, 1995, 11 (5): 583-604.
[29]Kuwabara T, Bael A, Iizuka E. Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different r-values[J]. Acta Materialia, 2002, 50 (14): 3717-3729.
[30]吴向东,万敏,周贤宾.各向异性板料屈服轨迹的研究[J].材料科学与工艺,2001,12(4):391-393.Wu X D, Wan M, Zhou X B.The yield loci of anisotropic sheet metals[J]. Materials Science & Technology, 2001, 12(4): 391-393.
[31]Muller W, Pohlandt K. New experiments for determining yield loci of sheet metal[J]. Journal of Materials Processing Technology, 1996, 60 (S1-4): 643-648.
[32]Banabic D. Anisotropy and formability of AA5182-O aluminium alloy sheets[J]. CIRP Annals-Manufacturing technology, 2004, 53 (1): 219-222.
[33]Naka T, Uemori T, Hino R, et al. Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet [J]. Journal of Materials Processing Technology, 2008, 201 (1): 395-400.
[34]Merklein M, Hubnatter W, Geiger M. Characterization of yield behavior of sheet metal under biaxial stress condition at elevated temperatures [J]. CIRP Annals-Manufacturing Technology, 2008, 57 (1):269-274.
[35]Green D E, Neale K W, MacEwen S R, et al. Experimental investigation of the biaxial behaviour of an aluminum sheet[J]. International Journal of Plasticity, 2004, 20 (20): 1677-1706.
[36]Teaca M, Charpentier I, Martiny M, et al. Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests[J]. International Journal of Mechanical Science, 2010, 52 (4): 572-580.
[37]Zhang S, Leotoing L, Guines D, et al. Calibration of anisotropic yield criterion with conventional tests or biaxial test [J]. International Journal of Mechanical Science, 2014, 554-557: 142-151.
[38]Prates P A, Oliveira M C, Fernandes J V. A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test [J]. Computational Materials Science, 2014, 85 (4): 102-120.
[39]Kuwabara T, Kuroda M, Tvergaard V, et al. Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets[J]. Acta Materialia, 2000, 48 (9): 2071-2079.
[40]Wang H, Wan M, Wu X D, et al. The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification [J]. Computational Materials Science, 2009, 47 (1): 12-22.
[41]Wang H, Wan M, Wu X D, et al. Subsequent yield loci of 5754O aluminum alloy sheet [J]. Transactions of Nonferrous Metals Society of China, 2009, 19 (5): 1076-1080.
[42]Uemori T, Kuramist T, Moti Y, et al. Elasto-plasticity behavior of high strength steel sheet in biaxial stress path change[J]. Material Transactions, 2010, 51(7): 1814-1818.
[43]Gozzi J, Olsson A, Lagerqvist O. Experimental investigation of the behavior of extra high strength steel [J].Experimental Mechanics, 2005, 45(45): 533-540.
[44]Gozzi J, Olsson A. Extra high strength steel plasticity – experimental work and constitutive modelling[A]. Proceedings of the Fourth International Conference on Advances in Steel Structures[C]. Shanghai, China, 2005.
[45]Merklein M, Suttner S, Brosius A. Characterisation of kinematic hardening and yield surface evolution from uniaxial to biaxial tension with continuous strain path change[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1): 297-300.
[46]Liu W, Guines D, Leotoing L. et al, Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen [J]. International Journal of Mechanical Sciences, 2015, 101-102: 387-398.
[47]Leotoing L, Guines D, Zidane I, et al. Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability[J]. Journal of Materials Processing Technology, 2013, 213 (6): 856-863.
[48]Leotoing L, Guines D. Investigations of the effect of strain path changes on forming limit curves using an in-plane biaxial tensile test [J]. International Journal of Mechanical Sciences, 2015, 99: 21-28.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com