Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on the establishment of forming limit curve of aluminum alloy AA5182-O
Authors: Wu Bin  Shan Yun 
Unit: Wuxi Institude of Technology 
KeyWords: forming limit curve  cupping tests  bulging experiments 
ClassificationCode:TG386
year,vol(issue):pagenumber:2016,41(3):29-33
Abstract:

As the most comprehensive and simple criterion of material forming, forming limit curves have become an important tool to measure the formability and solve the stamping problems. The uniaxial tensile test, cupping test and bulging experiments were conducted with aluminum alloy AA5182-O, and the forming limits strain points of corresponding methods were obtained, further the fitted experiment forming limit curves were compared with each other, finally, the stamping was conducted to verify the accuracy of the test forming limit curves. The study shows that the forming limit curves obtained by uniaxial tensile test and cupping test are lower than that by bulging experiments. However, the limit point obtained by cupping test has the equivalent limit point while the bulging limit curve lacks of it. After compared the stamping failure limit points with the experiment forming limit curves, the forming limit curves obtained by the single drawing and cupping tests are more accurate than that by the bulging experiments.

Funds:
国家自然科学基金资助项目(51165021);江苏高校品牌专业江苏项目(PPZY2015A086)
AuthorIntro:
吴斌(1972-),男,硕士,副教授
Reference:


[1]Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP Annals-Manufacturing Technology, 2005, 54(1): 209-212.
[2]Bariani P  F, Bruschi S,Ghiottia A,et al. Testing formability in the hot stamping of HSS[J]. Manufacturing Technology,2008,57(1): 265-268.
[3]古丽, 张建, 李云涛, 等. 6061铝合金板材冲压成形性能研究[J]. 重型机械, 2009,(2):20-23.Gu L, Zhang J, Li Y T,et al. Research on the property of 6061 alloy sheet drawing[J]. Heavy Machinery, 2009,(2):20-23.
[4]孙成智, 陈关龙, 林忠钦, 等. 控制压边力改善铝合金板成形性能的研究[J]. 材料科学与工艺, 2005, 13(4): 445-448.Sun C Z, Chen G L, Lin Z Q,et al. Control of the blank-holder force to improve the formability of aluminum alloy sheet[J]. Materials Science & Technology, 2005, 13(4): 445-448.
[5]Nargess Sha, Hmanesh Bank. Material advantages[J]. Automotive Engineer,2003, (10) : 38 - 40.
[6]彭晓东, 李玉兰, 刘江. 轻合金在汽车上的应用[J]. 机械工程材料, 1999, 23(2):1-4,23.Peng X D, Li Y L, Liu J. The applications of light alloys to automotive industry[J]. Materials for Mechanical Engineering, 1999, 23 (2):1-4,23.
[7]Bunk W G J. Alumium RS metallurgy[J]. Mater. Sci.Eng.:A,1991, 134:1087-1097.
[8]Lavemia E J ,Ayers J D ,Srivatsan T S. Rapid solidification processing with specific application to aluminum alloys[J ]. Inter. Mater. Rep. ,1991,37(1):1244.
[9]陶友瑞, 吴安如. 耐热铝合金FVS0812 板材冲压成形性能研究[J]. 塑性工程学报, 2008, 15 (3): 9-12. Tao Y R,Wu A R. Research on property of heat-resistance aluminum (FVS0812) sheet drawing[J]. Journal of Plasticity Engineering, 2008, 15 (3): 9-12.
[10]Tetsuo Naka, Gaku Ttorikai, Ryutaro Hino. The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet [J]. Materials Processing Technology, 2001,1(1):648-653.
[11]王巍, 刘春, 李东升. 2024 铝合金筒形件拉深成形试验与有限元仿真[J]. 锻压技术,2014, 39(11):1-5.Wang W, Liu C, Li D S. Cylindrical deep drawing test and finite element simulation of 2024 aluminum alloy sheet[J]. Forging & Stamping Technology, 2014, 39(11):1-5.
[12]陈炜, 周宏超, 徐雪来, 等. 盒形件变压边力拉深成形研究[J]. 锻压技术, 2014, 39(11): 20-23.Chen W, Zhou H C, Xu X L, et al. Research on variable blank holder force deep drawing for rectangular box parts[J]. Forging & Stamping Technology,2014,39(11):20-23.
[13]Bruni  C, Forcellese A, Gabrielli F, et al. Effect of temperature, strain rate and fibre orientation on the plastic flow behaviour and formability of AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 2010,210(10):1354-1363.
[14]杜平梅, 郎利辉, 刘宝胜, 等. 基于M-K模型的成形极限预测及参数影响[J]. 塑性工程学报, 2011, 18(5):84-89.Du P M, Lang L H, Liu B S,et al. Theoretical prediction and parameter influence of FLDs based on M-K mode[J]. Journal of Plasticity Engineering, 2011, 18(5):84-89.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com