Due to the characteristic of equal curvature of each position, the performance of the constant force spring is excellent. However, due to its geometry constraint in stabilizing heat treatment, it exhibits the bias of outer diameter greater than the inner diameter in the conventional forming process which affects its accuracy. A novel method of the continuous bending by compositing stretch and compression was proposed, and formed workpiece was obtained. Therefore, the above bending process was analyzed by the numerical simulation method, and the key technological parameters such as the post tension, the die clearance, the punch fillet radius and the strip thickness, etc. influencing bending process were studied. And then the simulation results were verified by experiments. On the basis of the compression and bending, the tension was applied at both sides of the strip in the bending method. Furthermore, positive and negative bending were carried out, and the residual stress state was optimized. So the stability of the part was improved.
|
[1]Spaggiari A, Dragoni E, Tuissi A. NiTi alloy negator springs for long-stroke constant-force shape memory actuators: modeling, simulation and testing [J]. Journal of Materials Engineering and Performance, 2014, 23(7): 2412-2419. [2]Votta F A, Lansdale P A. The theory and design of long deflection constant force spring elements [J]. Transactions of the ASME, 1952, 74: 439-450. [3]Weems W. Constant force spring actuator: U.S. Patent, 6,129,181[P]. 2000-10-10. [4]张文华.电机刷握用恒力弹簧[J].大电机技术,1983,(3):31-33.Zhang W H. Constant force spring for motor brush holder [J]. Large Electric Machine and Hydraulic Turbine, 1983, (3): 31-33. [5]项松年.恒力弹簧的设计和应用[J].机械制造,1981,(1):23-25.Xiang S N. Design and application on constant force spring [J]. Machinery, 1981,(1): 23-25. [6]付铁,丁洪生.恒力弹簧的载荷-变形特性分析[J].北京理工大学学报,2011,31(8): 905-908.Fu T, Ding H S. Analysis on load-deflection behaviors of constant force spring [J].Journal of Beijing Institute of Technology, 2011,31(8): 905-908. [7]Cannon J R. Compliant Mechanisms to Perform Bearing and Spring Functions in High Precision Application [D]. Utah: Brigham Young University, 2004. [8]翟瑞雪.型材平面拉弯的弹复解析理论及其验证[D].秦皇岛:燕山大学,2013.Zhai R X. The Theory of Spring Back Analysis for Profile Plane Stretch-Bending and Verification [D].Qinhuangdao: Yanshan University, 2013. [9]李占华, 韩静涛, 于春宇, 等.拉压复合连续弯曲成形恒力弹簧工艺研究[J].锻压技术,2016,41(4): 49-53.Li Z H, Han J T, Yu C Y, et al. Research on the continuous forming process by compositing stretch bending and press bending for Constant force Spring [J]. Forging & Stamping Technology, 2016,41(4): 49-53. [10]金晓鸥,张松愉,薛文博,等.不同时效状态3J21合金拉伸性能[J].宇航材料工艺,2008,(6):60-63.Jin X O, Zhang S Y, Xue W B, et al. Tensile properties of 3J21 alloy at different aged states [J]. Aerospace Materials & Technology, 2008,(6): 60-63. [11]GB/T 228.1-2010,金属材料拉伸试验 第1部分:室温试验方法[S].GB/T 228.1-2010,Metallic materials-Tensile testing-Part 1: Method of test at room tenperature[S]. [12]阚盈,刘振刚,张士宏,等. 基于真实微观结构的SiCp/Al复合材料轧制过程模拟[J]. 稀有金属, 2015,39(4):289-299.Kan Y, Liu Z G, Zhang S H, et al. Rolling process simulation of SiCp/Al composites via a microstructure-based model [J]. Chinese Journal of Rare Metals, 2015, 39(4): 289-299. [13]刘志颖,孙威,陈红升,等. 稀土永磁磁粉气流粉碎过程的模拟计算[J]. 稀有金属, 2015,39(6):504-509.Liu Z Y, Sun W, Chen H S, et al. Simulation on jet milling process to prepare rare earth permanent magnetic powders [J]. Chinese Journal of Rare Metals, 2015, 39(6): 504-509. [14]陈晓奇,杨西荣,刘晓燕,等. 模具通道夹角对纯钛ECAP变形织构演变影响的有限元分析[J]. 稀有金属, 2015,39(11):975-981.Chen X Q, Yang X R, Liu X Y, et al. Deformation texture evolution of pure titanium during equal channel angular pressing with different channel angles by finite element analysis [J]. Chinese Journal of Rare Metals, 2015, 39(11): 975-981. [15]刘振勇, 李亚光, 李大永. 5754-H111铝合金板材成形极限实验及数值模拟[J]. 锻压技术,2014,39(1):35-40.Liu Z Y, Li Y G, Li D Y. Forming limit experiment and numerical simulation of 5754-H111 aluminum alloy sheet [J]. Forging & Stamping Technology, 2014, 39(1): 35-40. [16]黄娜,余际星,成秀文,等. GQ280钢冲压成形应用及回弹控制模拟[J]. 锻压技术,2014,39(2):57-62.Huang N, Yu J X, Cheng X W, et al. Stamping application and springback control simulation for GQ280 steel [J]. Forging & Stamping Technology, 2014, 39(2): 57-62.
|