Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Inspection of blanking section quality based on machine vision
Authors: Chen Kang Xiao Xiaoting Chen Yuankun Wang Zetao Sun Yousong Ruan Weiping 
Unit: Guangdong University of Technology Guangdong  Metal Forming Machine Works Co. Ltd. 
KeyWords: machine vision blanking section quality inspection LabVIEW 
ClassificationCode:TG386
year,vol(issue):pagenumber:2016,41(6):109-114
Abstract:

 For the problem of lacking detection means, low detection rate, and high false rate etc. in the inspection of blanking section quality, a new detection method was proposed based on machine vision, which was carried out by the platform of software LabVIEW and image processing technology. It was described the composition and principle of the system, hardware design and the study on detection algorithm. Finally, the partition size of blanking section was obtained under the cooperation of light source and the lens by USB industrial camera capturing the section image and vision module in NI LabVIEW processing the image, and judged whether the product was qualified or not. The results show that this method can quickly and accurately capture the section characteristics of the blanking section. It also completely meets the requirements of blanking section quality inspection.

Funds:
基金项目:广东省战略性新兴产业发展专项(2012A090100014);广东省大学生创新创业训练计划项目(201511845028)
AuthorIntro:
作者简介:陈康(1992-),男,硕士研究生 E-mail:chenkang_hugh@163.com 通讯作者:肖小亭(1957-),男,博士,教授,博士生导师 E-mail:xiaoxt@gdut.edu.cn
Reference:

 


 


[1]王燕, 林苏斌, 缪希仁. 基于LabVIEW的机器视觉在玻璃缺陷检测中的运用[J]. 工业控制计算机, 2011, 24(4):75-77.Wang Y,Lin S B,Mou X R, Application of machine vision in detection of glass defect based on LabVlEW[J]. Industrial Control Computer, 2011, 24(4):75-77.


[2]方胜,李有森,李魏魏,等.基于NI Vision Assistant的机器视觉在钢球表面检测中的应用[J].仪表技术,2008,(5):27-29.Fang S, Li Y S, Li W W, et al. Application of machine vision in surface detection of steel ball based on NI vision assistant[J]. Instrumentation Technology,2008,(5):27-29.


[3]Mario Mollo Neto, Odivaldo Vendrametto,Jose Paulo Alves Fusco. Automated system for leather inspection:The machine vision[J]. Emerfing Solutions for Future Manufacturing Systems,2005,159: 387-396.


[4]Sen D, Pal S K. Gradient histogram:Thresholding in a region of interest for edge detection[J].Image and Vision Computing,2009,(4):677-695.


[5]黄柳倩. 基于机器视觉的冲压件缺陷检测系统研究[D]. 广州:广东工业大学, 2012.Huang L Q. Research on Defect Inspection System of Stamping Parts Based on Machine Vision[D]. Guangzhou: Guangdong University of Technology,2012.


[6]凌云,王一鸣,孙明,等.基于机器视觉的大米外观品质检测装置[J].农业机械学报,2005,36(9):89-92.Ling Y,Wang Y M,Sun M, et al. A machine vision based instrument for rice appearance quality[J]. Transactions of the Chinese Society for Agricultural Machinery,2005,36(9):89-92.


[7]Nashat S, Abdullah A, Abdullah M Z. Machine vision for crack inspection of biscuits featuring pyramid detection scheme[J]. Journal of Food Engineering, 2014,120(1):233-247.


[8]Kolyuchkin V  Ya, Nguyen Cong Minh, Tran Tine Hai. Image processing algorithms in machine vision systems of robotized industrial lines[J]. Neurocomputers Development and Application, 2014,3,44-51.


[9]吕文阁,刘建群,杜建辉,等.应用机器视觉的工件表面质量检测[J].机床与液压,2006,(4):154-155,158.Lv W G, Liu J Q,Du J H, et al. The quality testing of workpiece surface based on machine vision [J].Machine Tool & Hydraulics, 2006,(4):154-155,158.


[10]李炜,黄心汉,王敏,等.基于机器视觉的带钢表面缺陷检测系统[J].华中科技大学学报:自然科学版,2003,31(2):72-74.Li W, Huang X H, Wang M, et al. The steel surface inspection system based on computer vision[J]. Journal of Huangzhong university of Science and Technology:Natural Science Edition, 2003,31(2):72-74.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com