Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on mechanical property prediction of power spinning connecting rod bushing based on RBF neural network
Authors: She Yong Fan Wenxin Chen Dongbao Cao Cuncun 
Unit: North University of China 
KeyWords: power spinning  spinning process parameter  mechanical properties  RBF neural network 
ClassificationCode:TG376
year,vol(issue):pagenumber:2016,41(6):128-132
Abstract:

 For the difficulty of expressing the complex relationships between process parameters and mechanical property of connecting rod bushing formed in power spinning using a formula, it was established the model of RBF neural network between the spinning process parameters (thinning ratio, heat treatment temperature and feed ratio) and mechanical property (brinell hardness, elongation, yield strength and tensile strength). Then, the RBF neural network was trained by experimental data, and the mechanical property of formed part was predicted by the above trained RBF neural network. Comparing the experimental data with the predicted results of BP neural network, it is found that the RBF neural network has better prediction performance than BP neural network. Therefore, the RBF neural network model is of high prediction performance and short modeling time. Thus, it can effectively improve the design efficiency of connecting rod bushing process and reduce the cost in actual experiment.

Funds:
基金项目:山西省自然科学基金资助项目(2012011023-2);山西省高校高新技术产业化项目(20120021)
AuthorIntro:
作者简介:佘勇(1990-),男,硕士研究生 E-mail:sy09020641@163.com 通讯作者:樊文欣(1964-),男,博士,教授 E-mail:fanwx@nuc.edu.cn
Reference:

 
[1]原霞,王铁,樊文欣,等.基于simufact 的连杆衬套旋压工艺参数的模拟研究[J]. 热加工工艺,2013,42(1):63-66. Yuan X, Wan T, Fan W X, et al. Simulation research on spinning technological parameters of connecting rod bushing based on simufact[J]. Hot Working Technology, 2013, 42(1): 63-66. 



[2]张利鹏,刘智冲,周宏宇. 筒形件强力旋压发展过程及其现状分析[J].塑性工程学报,2006,13(1):43-46,57.Zhang L P, Liu Z C, Zhou H Y. Development process and current situation analysis of power spinning for cylindrical parts[J]. Journal of Plasticity Engineering, 2006, 13(1): 43-46,57.


[3]樊文欣,张涛,宋河金,等. 强力旋压加工的高速柴油机连杆衬套[J].车用发动机,1997,(2):32-35.Fan W X, Zhang T, Song H J, et al. A connecting rod bushing of high speed diesel engines by the powerful swivel press technique[J]. Vehicle Engine, 1997,(2): 32-35.


[4]雷萍. 小波神经网络技术在齿轮箱轴承故障诊断中的应用[D].兰州:兰州理工大学,2009.Lei P. Application of Wavelet Neural Network to Gearbox Bearings Fault Diagnosis[D]. Lanzhou: Lanzhou University of Technology, 2009.


[5]冯志刚,樊文欣,赵俊生,等. 基于BP神经网络的强力旋压成形连杆衬套壁厚预测[J].热加工工艺,2014,43(3):129-130,134.Feng Z G, Fan W X, Zhao J S, et al. Wall thickness prediction of connecting rod bushing of power spinning forming based on BP neural network[J]. Hot Working Technology, 2014, 43(3): 129-130, 134.


[6]李涛,樊文欣,赵俊生,等. 基于BP神经网络的强力旋压成形本构关系模型[J]. 锻压技术,2014,39(2):150-153.Li T, Fan W X, Zhao J S, et al. Research on constitutive relation of tube power spinning forming based on BP neural network[J]. Forging & Stamping Technology, 2014, 39(2): 150-153.


[7]盛仲飙. BP神经网络原理及MATLAB仿真[J].渭南师范学院学报,2008,23(5):65-67.Sheng Z B. Principle of BP neural network and MATLAB simulation[J]. Journal of Weinan Teachers University, 2008, 23(5): 65-67.


[8]宋献锋,张克辉. 基于模糊RBF神经网络的板带横向厚度和纵向厚度综合控制[J].热加工工艺,2012,41(13):132-137.Song X F, Zhang K H. Strip horizontal thickness and vertical thickness complex cxontrol based on fuzzy RBF neural-network[J]. Hot Working Technology, 2012, 41(13): 132-137.


[9]田银,谢延敏,孙新强,等. 基于鱼群RBF神经网络和改进蚁群算法的拉深成形工艺参数优化[J]. 锻压技术,2014,39(12):129-136.Tian Y, Xie Y M, Sun X Q, et al. Process parameters optimization of deep drawing based on fish RBF neural network and improved ant colony algorithm[J]. Forging & Stamping Technology, 2014,39(12): 129-136.


[10]刘维群,李为华. 基于自组织选取中心的广义RBF神经网络学习算法[J]. 信阳师范学院学报:自然科学版,2007,20(4): 515-517. Liu W Q, Li W H. An algorithm for generalized RBF network based on self-organizing selection center[J]. Journal of Xinyang Normal University:Natural Science Edition, 2007, 20(4): 515-517. 


[11]尤文坚,叶雪英,唐仕云. 基于径向基神经网络农机数量预测的研究[J].中国农机化学报,2013,34(2):38-41.You W J, Ye X Y, Tang S Y. Research on forecast of the number of agricultural machinery based on RBF neural network[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(2): 38-41. 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com