Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Experimental research on super-plastic parameters of high temperature titanium alloy TA12A
Authors: Xu Kai1 Han Weiqun1  Sai Yin2  Li Baoyong1 
Unit: 1.Beijing Hangxing Technology Development Co. Ltd.  2.Air Force Military Delegate Office Located in   Western Beijing  
KeyWords: titanium alloy TA12A  super-plastic forming  high-temperature tensile test 
ClassificationCode:
year,vol(issue):pagenumber:2016,41(7):51-55
Abstract:

 In order to study the super-plastic parameters of high temperature titanium alloy TA12A, the high temperature tensile tests with 2 mm thick plates were carried out under different temperatures and initial strain rates, the microstructure of specimen was studied at 920 ℃. The results show that  the total elongation rates of TA12A sheet are all above 400% at 900-940 ℃ and good super-plastic tensile properties are obtaind. Elongation rate of 785% is obtained at 940 ℃ under the initial strain rate of 1×10-3 s-1. Considering that the higher temperature leads to longer keeping time and more obvious reduction of the material properties after forming in actual production process, the final process parameters are determined as temperature 920 ℃ and initial strain rate 1×10-3 s-1. The grain size growth of stretch part is affected by both holding time and stain during super-plastic deformation. 

Funds:
AuthorIntro:
徐凯(1989-),男,硕士,助理工程师
Reference:

[1]莱因斯 C,皮特尔斯M. 钛与钛合金 [M]. 陈振华译. 北京: 化学工业出版社, 2005.


Leyens C, Peters M. Titanium and Titanium Alloys [M].  Translated by Chen Z H. Beijing: Chemical Industry Press, 2005.

[2]杜予晅,郝芳,雷锦文,等. 锻造工艺对TA12A钛合金组织性能的影响规律研究 [J]. 锻压技术,2015,40(8):124-127.

Du Y X, Hao F, Lei J W, et al. Study on influence of forging process on microstructure and properties of titanium alloy TA12A [J]. Forging & Stamping Technology, 2015, 40(8):124-127.

[3]文九巴,杨蕴林,杨永顺,等. 超塑性应用技术 [M]. 北京: 机械工业出版社,2005.

Wen J B, Yang Y L, Yang Y S, et al. Superplastic Application Technology [M]. Beijing:China Machine Press, 2005.

[4]苑世剑. 轻量化成形技术 [M]. 北京:国防工业出版社,2010.

Yuan S J . Lightweight Forming Technologies [M]. Beijing: National Defense Industry Press, 2010.

[5]李志强, 郭和平. 超塑成形/扩散连接技术的应用进展和发展趋势[J]. 航空制造技术, 2010,(8):32-35.

Li Z Q, Guo H P . Application progress and development tendency of superplastic forming/diffusion bonding technology [J]. Aeronautical Manufacturing Technology, 2010,(8):32-35.

[6]中国质量协会. QC小组基础教材[M].2版. 北京:中国社会出版社,2000.

China Association for Quality. Basic Course of QC Groups[M]. Second Edition. Beijing: China Society Press, 2000.

[7]刘泾源. Ti750高温钛合金超塑成形性能及组织演变研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

Liu J Y . Superplastic Formability and Microstructure Evolution of Ti750 High Temperature Titanium Alloy [D]. Harbin: Harbin Institute of Technology, 2011.

[8]赵子博, 葛敬鲁, 陈志勇, 等. Ti-55钛合金板材的超塑性变形行为 [J]. 中国有色金属学报, 2010, 20(S1):847-851.

Zhao Z B, Ge J L, Chen Z Y, et al. Superplastic deformation of Ti-55 alloy sheet [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):847-851.

[9]宋玉泉. 超塑拉伸变形的力学解析 [J]. 机械工程学报, 2003, 39(10): 64-72.

Song Y Q. Mechanical analysis of superplastic tensile forming [J]. Chinese Journal of Mechanical Engineering, 2003, 39(10): 64-72. 

[10]牛红志, 张于胜, 陈玉勇. β型γ-TiAl合金的组织特征及其超塑性变形行为[J]. 稀有金属材料与工程, 2015, 44(4):892-895.

Niu H J, Zhang Y S, Chen Y Y. Microstructure characteristics and superplastic behavior of β-solidifying γ-TiAl based alloys[J]. Rare Metal Materials and Engineering, 2015, 44(4):892-895.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com