Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:An algorithm of the constrained two-dimensional nesting
Authors: Zhu Qiang  Xue Feng   Zheng Shiyong   Guan Weili 
Unit: Zhongyuan University of Technology Hezhou University  Nanning University 
KeyWords: two-dimensional nesting problem with constrain nesting algorithm implicit enumeration    rectangular blanks five block nesting pattern 
ClassificationCode:TP391
year,vol(issue):pagenumber:2016,41(9):148-151
Abstract:

 The constrained two-dimensional nesting problem was discussed, and the total value of the 

 
blank was in the maximum when one blank was cut to meet upper bound and optimization 
 
objective. The cutting process was simplified by five-block pattern. The blank was cut into 
 
five-blocks, and then each block was cut into the required blanks. An algorithm based on 
 
implicit enumeration and branch bound algorithm was constructed to generate five-block 
 
pattern. Firstly, the nesting values of all possible size blocks were calculated, and then the 
 
five-block combination which had the maximal value was chosen to generate five-block pattern. 
 
Finally, the five-block pattern algorithm with constrain was tested by the benchmark problems 
 
of the literature. The research results show that the average value of the proposed algorithm 
 
is higher than those of the literature about 12.85%, 4.52%, 1.89% respectively, and the 
 
computation time is shorter.
Funds:
广西自然科学基金资助项目(2015GXNFBA139264);贺州市科技开发项目(贺科能1506006)
AuthorIntro:
朱 强(1985-),男,硕士,讲师 郑仕勇(1983-),男,硕士,高级工程师
Reference:

 
[1]    潘卫平, 陈秋莲, 崔耀东, 等. 基于匀质条带的矩形件最优三块布局算法[J]. 图学学报, 


 

2015, 36(1): 7-11.

 

Pan W P,Chen Q L, Cui Y D, et al. An algorithm for generating optimal homogeneous strips three 

 

block patterns of rectangular blanks[J].Journal of Graphics, 2015, 36(1): 7-11.

 


[2]   易向阳, 仝青山, 潘卫平. 矩形件二维下料问题的一种求解方法[J]. 锻压技术, 2015, 40(6): 

 

150-154.

 

 Yi X Y, Tong Q S, Pan W P. A solving method of two-dimensional cutting for the rectangular
[J

 

].Forging & Stamping Technology, 2015, 40(6): 150-154.

 


[3]   王晓新, 陈磊. 基于高斯过程的萤火虫算法及其在板料成形优化设计中的应用[J].锻压技术, 

 

2015, 40(12): 26-34.

 

Wang X X, Chen L. Firefly algorithm and application in sheet metal forming optimization based 

 

on Gaussian process[J].Forging & Stamping Technology, 2015, 40(12): 26-34.

 


[4]   Hifi M, Roucairol C. Approximate and exact algorithms for constrained (un) weighted 

 

two-dimensional two-staged cutting stock problems[J]. Journal of Combinatorial Optimization, 

 

2001, 5(4): 465-494.

 


[5]   Wscher G, Hauner H, Schumann H. An improved typology of cutting and packing 

 

problems[J]. European Journal of Operational Research, 2007, 183(3): 1109-1130.

 


[6]   Lodi A, Monaci M. Integer linear programming models for 2-staged two-dimensional 

 

knapsack problems[J]. Mathematical Programming, 2003, 94(2-3): 257-278.

 


[7]   Belov G, Scheithauer G. A branch-and-cut-and-price algorithm for one-dimensional stock 

 

cutting and two-dimensional two-stage cutting[J]. European Journal of Operational Research, 

 

2006, 171(1): 85-106.

 


[8]   Hifi M, M′ Hallah R. Strip generation algorithms for constrained two-dimensional two

 

-staged cutting problems[J]. European Journal of Operational Research, 2006, 172(2): 515-

 

527.

 


[9]   Hifi M, M′ Hallah R, Saadi T. Algorithms for the constrained two-staged two-

 

dimensional cutting problem[J]. Informs Journal on Computing, 2008, 20(2): 212-221.

 


[10]Hifi M, Negre S, Ouafi R, et al. A parallel algorithm for constrained two-staged two-

 

dimensional cutting problems[J]. Computers & Industrial Engineering, 2012, 62(1): 177-189.

 


[11]季君, 陆一平, 查建中, 等. 生成矩形毛坯最优两段排样方式的确定型算法[J]. 计算机学报, 

 

2012,35(1):183-191.

 

Ji J, Lu Y P, Zha J Z, et al.A deterministic algorithm for optimal two-segment cutting 

 

patterns of rectangular blanks[J].Chinese Journal of Computers,2012,35(1):183-191.

 


[12]Cui Y, Yang Y. A recursive branch-and-bound algorithm for constrained homogenous T-shape 

 

cutting patterns[J]. Mathematical and Computer Modelling, 2011, 54(5): 1320-1333.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com